Universitas Islam Negeri Sultam Syarif Kasim Riau, Indonesia
* Corresponding author
Universitas Islam Negeri Sultam Syarif Kasim Riau, Indonesia
Universitas Islam Negeri Sultam Syarif Kasim Riau, Indonesia.
Universitas Islam Negeri Sultam Syarif Kasim Riau, Indonesia

Article Main Content

This study determined the general form of the trace of the triangular matrices n × n with the power of positive integer. Before obtaining the general form of the trace of triangular matrices (upper triangle and lower triangle) n × n with the power positive integer, first obtain the general form of the triangular matrices n × n with power positive integer. Obtaining the general form of the triangular matrices n × n with the power positive integer is carried out by determining of the triangular matrices from power two to power eight. It is further suspected that the general form of a triangular matrices n × n with the power of a positive integer and prove it using mathematical induction. Finally, a triangular matrices trace n × n with the power of a positive integer is obtained with direct proof based on the general form of the matrices has been obtained. Given the application trace of the triangle matrices n × n with power positive integer by an example.

References

  1. Brezinski C, Fika P, Mitrouli M. Estimations of the Trace of Powers of Positive Self-Adjoint Operators by Extrapolation of the Moments. Electronic Transactions on Numerical Analysis. 2012 May 7; 39:144–155.
     Google Scholar
  2. Pahade J, Jha M. Trace of Positive Integer Power of Real 2 × 2 Matrices. Advances in Linear Algebra & Matrix Theory. 2015 Desember; 5 (4): 150–155.
     Google Scholar
  3. Aryani F, Solihin M. Trace Matriks Real Berpangkat Bilangan Bula Negatif, Jurnal Sains Matematika dan Statistika. 2017 Juli; 3 (2): 16–23.
     Google Scholar
  4. Aryani F, Yulianis. Trace Matriks Berbentuk Khusus 2×2 Berpangkat Bilangan Bulat Negatif. Jurnal Sains Matematika dan Statistika. 2018 Juli; 4 (2): 105–113.
     Google Scholar
  5. Aryani F, Cenia PB, Muda Y, Zukrianto Trace Matriks Simetris Berbentuk Khusus Orde 3 Berpangkat Bilangan Bulat. Prosiding Nasional pada Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI); 2021 Nov 18; (13): 300–310.
     Google Scholar
  6. Aryani F, Harnita, Muda Y, Zukrianto. Trace Matriks Simetris Berbentuk Khusus 4 x 4 Berpangkat Bilangan Bulat. Prosiding Nasional pada Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI); 2021 Nov 18; (13): 311–321.
     Google Scholar
  7. Aryani F, Alfinov SP, Marzuki CC, Rahma AN, Trace Matriks Simetris Berbentuk Khusus 5 x 5 Berpangkat Bilangan Bulat. (SNTIKI); 2021 Nov18; (13): 322–333.
     Google Scholar
  8. Rahmawati, Putri NA, Aryani F, Rahma AN. Trace Matriks Toeplitz Simetris Bentuk Khusus 3×3 Berpangkat Bilangan Bulat Positif. Jurnal Sains Matematika dan Statistika. 2019 Juli; 5 (2): 61–70.
     Google Scholar
  9. Aryani F, Andesta R, Marzuki CC. Trace Matriks Berbentuk Khusus 3×3 Berpangkat Bilangan Bulat Positif. Jurnal Sains Matematika dan Statistika. 2020 Januari; 6 (1): 40–9.
     Google Scholar
  10. Aryani F, Taslim R. Trace Matrix 3 x 3 Berpangkat Bilangan Bulat. Jurnal Sains Matematika dan Statistika. 2021 Januari; 7 (1): 1–9.
     Google Scholar
  11. Marjono. Linear Algebra. Malang UB Press; 2012.
     Google Scholar
  12. Gentle JE. Matrix algebra, vol. 10. Springer; 2007.
     Google Scholar
  13. Kariadinata R. Algebra of Elementary Matrices. Bandung Pustaka Setia; 2013.
     Google Scholar
  14. Larson R. Elementary Linear Algebra. 7th ed. Boston Cengage Learning; 2013.
     Google Scholar
  15. Rosen KH. Discrete Mathematics and Its Applications. New York Mc Graw Hill; 2007.
     Google Scholar
  16. Munir R. Discrete Mathematics. Bandung Informatics ITB; 2005.
     Google Scholar
  17. Rifa'I R. Basic Matrix Algebra. Yogyakarta Budi Utama; 2016.
     Google Scholar
  18. Banerjee S, Roy A. Linear Algebra and Matrix Analysis for Statistics. Crc Press Boca Raton; 2014.
     Google Scholar
  19. Anton H, Rorres C. Elementary Linear Algebra. United States of America Wiley; 2013.
     Google Scholar