##plugins.themes.bootstrap3.article.main##

In our previous paper, the logistic curve of the removed number was derived from SIR and SEIR models in the case of the small basic reproduction number. In this paper, we derive various logistic curves of the removed, unsusceptible and infectious numbers respectively from SIS and SIR models in the case of small and large basic reproduction numbers.

References

  1. Verhulst P-F. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathmatique et Physique, 1838; 10: 113-121.
     Google Scholar
  2. Lotka A.J. Elements of Physical Biology, Williams and Wilkins, 1925.
     Google Scholar
  3. Volterra V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei, 1926; 2:
     Google Scholar
  4. -113.
     Google Scholar
  5. Kermack W.O, McKendrick A.G. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society, 1927; A115: 700-721.
     Google Scholar
  6. Murray J.D. Mathematical Biology I. An Introduction, Third Edition, Springer-Verlag, New York Berlin Heidelberg, 2002.
     Google Scholar
  7. Hethcote H. The Mathematics of Infectious Diseases. SIAM Review, 2000; 42: 599-653.
     Google Scholar
  8. Brauer F, Driessche P.v.d, Wu J. (Eds.) Mathematical Epidemiology, Springer-Verlag, Berlin Heidelberg, 2008.
     Google Scholar
  9. Keeling M.J, Danon L. Mathematical modelling of infectious diseases. British Medical Bulletin, 2009; 92: 33-42.
     Google Scholar
  10. Pathak S, Maiti A, Samanta G.P. Rich dynamics of an SIR epidemic model. Nonlinear Analysis: Modelling and Control, 2010; 15: 71-81.
     Google Scholar
  11. Li M, Smith H.L, Wang L. Global Dynamics of an SEIR Epidemic Model with Vertical Transmission. SIAM J. Appl. Math., 2001; 62(1): 58-69.
     Google Scholar
  12. Sameni R. Mathematical Modeling of Epidemic Diseases; A Case Study of the COVID19 Coronavirus. https://doi.org/10.48550/arXiv.2003.11371. [12] Saito T, Shigemoto K. A Logistic Curve in the SIR Model and Its Application to Deaths by COVID-19 in Japan. European Journal of Applied Sciences,
     Google Scholar
  13. ; 10(5): 157-160. https://doi.org/10.1101/2020.06.25.20139865.
     Google Scholar
  14. Saito T. An Application of Logistic Formula to Deaths by COVID-19 in Japan. https://doi.org/10.1101/2020.09.15.20195081.
     Google Scholar
  15. Kokado A, Saito T. A Logistic Formula in Biology and Its Application to Deaths by the Third Wave of COVID-19 in Japan. Research and Reviews:
     Google Scholar
  16. Research Jounal of Biology, 2021; 9(4). https://doi.org/10.1101/2021.01.30.21250827.
     Google Scholar
  17. Saito T. Variants of SARS-COV-2 and the Death Toll. Integ. Mol. Bio. Biotechnol., 2021; 1: 1-3. https://doi.org/10.1101/2021.07.08.21260081.
     Google Scholar
  18. Saito T. Area Theorem of Infection Curves for Large Basic Reproduction Number. European Journal of Applied Sciences, 2022; 10(1): 482-486.
     Google Scholar
  19. Saito T. Analyses of COVID-19 in Japan by the Mathematical Model of SIR. European Journal of Applied Sciences, 2022; 10(3): 784-796.
     Google Scholar
  20. Saito T, Shigemoto K. A Logistic Curve in the SEIR Model and the Basic Reproduction Number of COVID-19 in Japan. European Journal of Applied
     Google Scholar
  21. Sciences, 2022; 10(5): 481-486. https://doi.org/10.1101/2022.09.18.22279896
     Google Scholar