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Modifying Weighted Kaplan-Meier Test for
Two-Sample Survival Comparison

S. Lee and E. Lee

Abstract

This paper presents an approach to improving the weighted Kaplan-Meier test statistics in order to make it a more useful tool
for a long-term comparison of two underlying survival distributions in the presence of right-censored data. The procedures are
based on the use of some weight function that involves the percentage of censored data as a component. Some versatile procedures
for the alternative, not pre-specified, are also discussed. Numerical simulations are conducted to investigate the performance of the
proposed procedures. For illustration, the procedures are applied to real-world data in clinical trials, where patients with tongue
cancer are divided into two groups according to tumor DNA.

Index Terms

Censored data, Kaplan-Meier estimator, Log-rank test, Survival distribution, Weighted Kaplan-Meier statistics.

I. INTRODUCTION

In analyzing survival data, especially in clinical trials with two different treatment groups, comparing survival differences
between the two groups is of interest. Comparing the distributions will allow initially indistinguishable difference to emerge,
and give insight into an accurate description of the relationship between them. Rank-based tests are often utilized for checking
the equality of two underlying survival distributions with arbitrarily right-censored data. Examples include the log-rank (Mantel
[13], Cox [4]) and the generalized Wilcoxon (Gehan [6], Peto and Peto [16]) statistics. As noted in Fleming and Harrington [5,
p.266], these statistics use integrated weighted differences in hazard functions, thus they are sensitive to the ordered hazards
alternative. In particular, the log-rank test is sensitive to detect alternatives and has optimum power when the assumption of
proportional hazard rates is held. However, the sensitivity is not necessarily achieved for the direct comparison of two survival
curves. So the rank-based tests, such as the log-rank test, may not be sensitive to the magnitude of survival differences, leading
to erroneous conclusions. To address this problem, Pepe and Fleming [14] proposed the weighted Kaplan-Meier (WKM)
statistic which is based directly on estimated survival functions (Kaplan and Meier [8]), rather than based on ranks, in the
two-sample problem. By directly comparing the survival functions, the WKM statistic has more prognostic ability in detecting
survival differences between two groups than the rank-based statistics. The literature on the WKM statistic includes Shen and
Cai [18], Logan et al. [12] and Lee et al. [11], among others. Shen and Cai [18] proposed a class of maximum WKM test
statistics to construct versatile test procedures. Logan et al. [12] considered the WKM statistic in a hypothesis formation to
compare late differences of survival curves, and Lee et al. [11] proposed the use of a process to improve the power property
of the WKM statistics.

This paper proposes a modification of the WKM statistic that leads to more powerful tests in the long-term survival
comparison task. Motivated by Buyske et al. [3] that develops Gρ statistics for low event rate survival data, the new test
uses some weight function adjusted by a censoring level, facilitating a range of alternatives of survival difference with right-
censored data. For example, the WKM test to assess the equality of two survival curves would lose power when the survival
curves cross. The new weight function, on the other hand, is shown to be a useful tool to deal with such a non-proportional
hazards circumstance, modifying the effect of the right-censoring that may cause the statistical power to decrease. Some
versatile tests with the proposed statistic are also developed, which will be effective when there is no prior knowledge of the
potential behavior of survival differences over a period of time. Numerical simulations demonstrate enhanced properties of the
new test compared to the WKM test, showing that the test detects a broad range of alternatives of survival differences.

This paper is organized as follows: In Section 2, the WKM statistic is briefly reviewed, the new method is described,
and some versatile test procedures are presented. Section 3 discusses the finite-sample properties of the new test in terms of
numerical simulations, and gives an application to real data for illustration. Section 4 concludes this paper.
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II. METHODS

A. Notation

For two-sample censored data of sizes n1 and n2, suppose that the survival time, also referred to as the failure/death time,
is continuous and independent of the censoring time in each group. Let Tij , i = 1, 2, j = 1, . . . , ni be independent, positive
random variables denoting the survival time, with distribution functions Fi(t) = P (Tij ≤ t). Let Cij , i = 1, 2, j = 1, . . . , ni,
be independent censoring variables, with distribution functions Li(t) = P (Cij ≤ t). The observed data are the pairs (Xij , δij),
where Xij = min(Tij , Cij) and δij = I(Tij ≤ Cij) in which I is the censoring indicator that is 1 if uncensored, i.e.,
Tij ≤ Cij , and 0 otherwise. Let Si = 1− Fi = P (Tij > t) and Gi = 1− Li = P (Cij > t) be survival functions of Tij and
Cij , respectively. The counting process approach has been developed into a general framework for analyzing censored survival
time data (Xij , δij) since it was first introduced by Aalen [1], [2]. Define the counting process by Nij(t) = I(Xij ≤ t, δij = 1)
and the at-risk process by Yij(t) = I(Xij ≥ t). For i = 1, 2, let

Ni(t) =

ni∑
j=1

Nij(t), Yi(t) =

ni∑
j=1

Yij(t).

Note that Ni(t) denotes the number of observed deaths in group i occurred by time t, and Yi(t) represents the number of
individuals at risk (i.e., not dead and not censored) in group i at time t− (i.e., just prior to time t). The product-limit estimator
(Kaplan and Meier [8]), also referred to as Kaplan-Meier estimator, of survival in group i is defined as

Ŝi(t) =
∏
s≤t

(
1− ∆Ni(s)

Yi(s)

)
,

where ∆Ni(s) = Ni(s) − Ni(s−) which denotes the number of failures at time s. The survival distribution in the pooled
sample is defined as

Ŝ(t) =
∏
s≤t

(
1− ∆N(s)

Y (s)

)
,

where ∆N(s) = N(s)−N(s−) with N(s) =
∑2

i=1Ni(s) and Y (s) =
∑2

i=1 Yi(s). The common distribution F (t) can then
be estimated by 1− Ŝ(t).

B. Weighted Kaplan-Meier Test

In studies with right-censored data, the weighted Kaplan-Meier test statistic (Pepe and Fleming [14]) is a valid test of the null
hypothesis of the equality of two underlying survival distributions. Let H0 : S1(t) = S2(t) for all t versus H1 : S1(t) ̸= S2(t)
for some t. Based on the integrated weighted differences of the Kaplan-Meier estimators, the WKM statistic is defined as

WK1
=

√
n1n2
n

∫ τ

0

K1(t){Ŝ1(t)− Ŝ2(t)}dt, (1)

where τ = sup{t : min(G1(t), G2(t)) > 0} the minimum of two groups’ largest survival time, n = n1 + n2, and K1(t) is a
data-dependent weight function to be chosen such that the difference Ŝ1(t)− Ŝ2(t) is downweighted over later time periods.
Pepe and Fleming [14], [15] proposed the following weight fucntion

K1(t) =
Ĝ1(t−)Ĝ2(t−)

p̂1Ĝ1(t−) + p̂2Ĝ2(t−)
,

where p̂i = ni/n, and Ĝi is the Kaplan-Meier estimator (Kaplan and Meier [8]) of the censoring survival function Gi. Note
that the weight function depends only on the censoring distributions, Ĝ1(t−) and Ĝ2(t−), not the survival distributions. The
weight K1(t) stabilizes the behavior of the statistic (1) in late observation periods by downweighting its variance there when
censoring is heavy (Pepe and Fleming [14]). The estimated pooled variance of WK1

is

σ̂2
WK1

= −
∫ τ

0

{
∫ τ

t
K1(t)Ŝ(u)du}2

Ŝ(t)Ŝ(t−)

p̂1Ĝ1(t−) + p̂2Ĝ2(t−)

Ĝ1(t−)Ĝ2(t−)
dŜ(t).

Then, under H0,
WK1

/σ̂WK1

d→ N(0, 1),

where “ d→ N(0, 1)” denotes convergence in distribution to the standard normal distribution with mean 0 and variance 1. An
asymptotic level α test is to reject H0 if

|WK1/σ̂WK1
| > zα/2.
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C. Proposed Test

The WKM statistic directly assesses the difference of two survival functions. Therefore, in testing the equality of the survival
distributions, this non-rank-based statistic would be more sensitive to the magnitude of the difference and so it would be more
effective for comparing the survival distributions of two groups, when compared to the rank-based statistics, such as the log-
rank statistic (Pepe and Fleming [14]). Nevertheless, some problematic issues arise when the WKM statistic is utilized. In order
for the heavy censoring to less affect variance, the weight function, K1(t), in (1) downweights the difference of Ŝ1(t) and
Ŝ2(t) at a later time period during which the unstable behavior of Ŝ1(t)− Ŝ2(t) could occur without it. However, the weight
function only stabilizes the variance of the statistic toward the end of the period (Pepe and Fleming [14], [15], Shen and Cai
[18]). Since the WKM statistic is a method to assess the equality of the entire survival curves, it may lead to misleading results
if the difference is not always either positive or negative. Several approaches to tackling the problem have been proposed
in the literature. Examples include Yang and Fleming [20], Shen and Cai [18], and Lee et al. [11], among others. A simple
and reliable way to improve the performance of the WKM statistic to handle the situation would be to make use of a weight
function consisting of the Kaplan-Meier estimator Ŝ(t). We propose the following weighted WKM statistic in which the weight
function accounts for the censoring level of data as a component,

WK2 =

√
n1n2
n

∫ τ

0

K2(t){Ŝ1(t)− Ŝ2(t)}dt, (2)

where

K2(t) = ψ(t, a)
Ĝ1(t−)Ĝ2(t−)

p̂1Ĝ1(t−) + p̂2Ĝ2(t−)

with
ψ(t, a) = {Ŝ(t−)− (1− a)Ŝ(τ−)}ρ

in which (1 − a) indicates the censoring proportion, i.e., 100 × a% shows the percentage of the observed survival time.
Note that in order to force the weight function, Ŝρ(t), of the Gρ statistic to decrease, Buyske et al. [3] proposed the weight
function, {Ŝ(t−) − Ŝ(τ−)}ρ. By using this weight function which subtracts its value at the end τ from the Kaplan-Meier
estimate, the test will better compare the survival curves, especially when the failure rate is rare. However, it might yield some
interference that results from the presence of the non-proportional hazards, and thus inaccurate comparisons of survival curves.
Heavy censoring would also affect the contrast between the survival curves. Since the heavy censoring makes the survival
curves not plateau at a late stage in time, the comparison result may deviate from the actual difference. The weight function,
{Ŝ(t−)− Ŝ(τ−)}ρ, subtracts the survival at the end point from the Kaplan-Meier estimate at any point t. For heavily censored
data, the Kaplan-Meier survival function decreases slowly, not dropping to near-zero toward the end of the observation period.
So, the weight function proposed by Buyske et al. [3] may inflate the difference when one of the curves stays close to 1 or the
curves cross. The component, ψ(t, a), in (2) is slightly different from this. This component weighs in on the weight function
as the censoring proportion increases, adjusting the censoring effect on the weight. This way, the ψ(t, a) better deals with the
non-proportional situation when it becomes more difficult to handle by heavy censoring. So, the weight function K2(t) has a
broader range of flexibility when compared to the weight function without that component.

Note that the ψ(t, a) decreases from 1 to (
aŜ(τ−)

1− (1− a)Ŝ(τ−)

)ρ

when scaled by ψ(0, a) for a > 0, ρ > 0 and Ŝ(τ−) < 1. The ratio of ψ(t, a) and ψ(t, 0), i.e., ψ(t, a)/ψ(t, 0),(
Ŝ(t−)− (1− a)Ŝ(τ−)

1− (1− a)Ŝ(τ−)

)ρ

indicates that ψ(t, a) is a decreasing function for t > 0 and ρ = 1.
It is wise to obtain a simpler integral to deal with than the statistic WK2 in (2) we started with. Using integration by parts,

the statistic WK2
can be written

WK2 =

√
n1n2
n

∫ τ

0

{
∫ τ

t

K2(u)du}d(Ŝ1(t)− Ŝ2(t))

= −
√
n1n2
n

∫ τ

0

{Ŝ1(t)− Ŝ2(t)}d(
∫ τ

t

K2(u)du).

Then, by Pepe and Fleming [14] and Shen and Cai [18], we get

WK2

d→ N(0, σ2
Wk2

)
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where

σ2
Wk2

= −
∫ τ

0

{
∫ τ

t
k2(u)S(u)du}2

S(t)S(t−)

p1G1(t−) + p2G2(t−)

G1(t−)G2(t−)
dS(t),

with k2(t) the deterministic version of K2(t) such that supt∈[0,τ ] |K2(t)− k2(t)| → 0 in probability, and pi = limn→∞ ni/n,
i = 1, 2. A consistent estimator of σ2

Wk2
is then

σ̂2
WK2

= −
∫ τ

0

{
∫ τ

t
K2(u)Ŝ(u)du}2

Ŝ(t)Ŝ(t−)

p̂1Ĝ1(t−) + p̂2Ĝ2(t−)

Ĝ1(t−)Ĝ2(t−)
dŜ(t),

which is a pooled version of the estimator. In fact, the weight function K2(t) is not predictable with respect to the σ-filtration
generated by (Nij(t), Yij(t)). So the standard martingale central limit theorem (Rebolledo [17], Gill [7]) cannot be applied
to show the asymptotic normality of the statistic WK2 . Nevertheless, martingale results of WK2 are still legitimate to show
the asymptotic normality, since the limit of the distribution of WK2 associated with appropriate estimators remains valid by
Buyske et al. [3] and Wu and Gillbert [19]. Thus, the weight function K2 can be replaced by its deterministic limit k2(t),
with no change in the limiting distribution of WK2

under H0. So, WK2
/σ̂WK2

converges to the standard normal distribution.
An asymptotic level α test is then to reject H0 when

|WK2
/σ̂WK2

| > zα/2.

D. Versatile Tests

The WKM statistic directly uses estimates of the survival functions, and is sensitive to the magnitude of the survival
difference. However, the weight function K1(t) in the WKM statistic is only for stabilizing the statistic in late observation
periods when heavy censoring. It may underperform under the hazard difference alternatives there due to less weight, especially
when the difference is non-negligible. The proposed weight function, K2(t), on the other hand, keeps the statistic to inflate
the survival difference at a later period in time by putting more weight, adapting to the censoring level. In order to bring
advantage of each weight function, versatile procedures that combine the statistics are considered. In this work, we utilize
a linear combination and the maximum of the WKM and proposed statistics. They are two commonly used procedures in
practice for the purpose of obtaining a robust statistic that shows good performance in a broad range of alternatives.

Let (WK1
,WK2

) be a bivariate test statistic. Then, by the argument of Shen and Cai [18],

(WK1
,WK2

)
d→ (Z∗

1 , Z
∗
2 )

under H0, where (Z∗
1 , Z

∗
2 ) have jointly asymptotic normal distribution with mean zero and covariance between them is given

by

σl,m = −
∫ τ

0

{
∫ τ

t
kl(u)S(u)du}{

∫ τ

t
km(u)S(u)du}

S(t)S(t−)

p1G1(t−) + p2G2(t−)

G1(t−)G2(t−)
dS(t), l,m = 1, 2

that can be consistently estimated by

σ̂l,m = −
∫ τ

0

{
∫ τ

t
Kl(u)Ŝ(u)du}{

∫ τ

t
Km(u)Ŝ(u)du}

Ŝ(t)Ŝ(t−)

p̂1Ĝ1(t−) + p̂2Ĝ2(t−)

Ĝ1(t−)Ĝ2(t−)
dŜ(t), l,m = 1, 2.

The standardized statistics are
Z̃l =

WKl√
σ̂l,l

, l = 1, 2.

Based on the above, we combine the tests to develop the procedures that have a broad range of sensitivity properties in power.
Under H0, the standardized statistics (Z̃1, Z̃2) have an asymptotically bivariate normal distribution with the standard normal
as marginals and correlation coefficient matrix (ρl,m)2×2 where ρl,m is the correlation coefficient between WK1 and WK2 that
can be consistently estimated by

ρ̂l,m =
σ̂l,m√
σ̂l,lσ̂m,m

.

Note that, as mentioned in Yang et al. [21] and Lee [10], when combining tests using WK1
and WK2

, one statistic with larger
variance dominates the other, and this results in poor performance of the combined tests. We first consider a linear combination
of Z̃1 and Z̃2 with equal weights, i.e., (Z̃1 + Z̃2)/2. Under H0, the linear combination of Z̃1 and Z̃2 follows a univariate
normal distribution with mean zero and variance that can be consistently estimated by

∑2
l,j=1 ρ̂l,m/4. Then, an asymptotic

level α test rejects the null hypothesis H0 : S1 = S2 if |Z̃1+ Z̃2|/2 ≥Z̃α/2

√∑2
l,m=1 ρ̂l,m/4. We now look at the maximum of

the WKM and proposed statistics, which provides a powerful test if one of the two statistics does. The statistic, max(Z̃1, Z̃2),
is asymptotically distributed as max(Z1, Z2), where (Z1, Z2) is a bivariate normal vector with mean zero and the covariance
estimator ρ̂1,2. Under H0, the asymptotic distribution of max(Z1, Z2) is equivalent to that of the maximum order statistic
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Fig. 1. Survival configurations for simulations.

of Z1 and Z2. Thus, for any constant c, P (max(Z1, Z2) ≥ c) = 1 − P (Z1 < c,Z2 < c), which can be calculated using
numerical integration of the bivariate Gaussian distribution. So, the critical value cα, such that P (max(Z̃1, Z̃2) ≥ cα) = α,
can be obtained based on the asymptotic normality of (Z̃1, Z̃2) and the estimated asymptotic correlation coefficient ρ̂1,2. A
100(1− α)% test rejects H0 when max(Z̃1, Z̃2) ≥ cα. Under H1 : S1 ̸= S2,

∫ τ

0
k2(t){S1(t)− S2(t)}dt is non-zero since the

variance σ̂l,l is bounded (Pepe and Fleming [15]). It follows that the maximum of the tests is consistent against any alternative
with the weight k2(t).

III. NUMERICAL STUDIES

A. Simulation

We conducted Monte Carlo simulations to assess the performance of the tests. With data artificially censored at various
levels, the WKM, log-rank, proposed and combined tests were compared in terms of the type I error rates (size) and power. For
the power simulation, two-tailed tests were performed and its results were obtained at the α = 0.05 significance level. Different
types of alternatives could be seen in a study of establishing a difference that may exist between two treatment effects to find
a better way to treat cancer. Our simulation study was designed to explore/compare the behaviors of the test statistics under
(a) the proportional hazards case and the cases not stochastically ordered in which the log rank test could lose power to detect
survival differences. They are as follows. Higher survival rates of one group than the other at early stage are possible, i.e., (b)
early survival differences. Two survival curves could cross at some time point, i.e., higher (lower) survival rates of a group
are observed than the other at early (late) time periods. To observe such early and late occurring survival differences with
different types, (c) early crossing survival curves and (d) mid crossing of survival curves were considered. Similar alternatives
for testing equality of survival distributions are often used in the literature, including Pepe and Fleming [14] and Lee [10].
In each alternative, survival times were generated from the piecewise exponential distributions with hazards rates λi, i = 1, 2,
for group i. With different values of λi, the four types of survival scenarios for the alternative were obtained. Specifically,
the power simulations were conducted for the following values of λi: λ1 = 1 and λ2 = 2 are set for (a), λ1 = 3, 0.75, 1 and
λ2 = 0.75, 3, 1 for t < 0.3, 0.3 ≤ t < 0.6, t ≥ 0.6, respectively, for (b), λ1 = 2, 0.5, 0.5 and λ2 = 0.5, 4, 4 for t < 0.3,
0.3 ≤ t < 0.6, t ≥ 0.6, respectively, for (c), and λ1 = 2, 0.5, 0.5 and λ2 = 0.5, 2, 2 for t < 0.5, 0.5 ≤ t < 0.8, t ≥ 0.8,
respectively, for (d). For the size simulation, the survival times were generated from the unit exponential with λ1 =λ2 = 2.
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Censoring distributions were taken from c × Uniform(0, 1), where the constant c is chosen to obtain the desired censoring
proportions. Figure 1 depicts the survival configurations (a)-(d).

a30 50 70
b30% 40% 50% 60% 30% 40% 50% 60% 30% 40% 50% 60%

Null
WKM 4 4.4 4.2 4.4 4.2 4.6 4.4 4.4 3.8 3.6 4.4 5.8
LR 4.8 3.6 4.2 4.8 4.4 5 4.8 4.4 3.8 4.2 4.2 5.6
NEW 4.4 3.4 3.6 4.4 4.6 4.2 5.2 4.6 4.4 4.2 5 5.6
LIN 3.6 3.8 3.6 4.6 4.6 4.2 4.6 4.8 3.2 4 4.6 5.6
MAX 6 5.8 4.6 5.6 5.4 6.2 6 5.2 6 5.6 5.2 6.2

Configuration (a)
WKM 53 47.6 38.6 34 76.2 72.8 65.4 49.8 89.6 88.2 80.2 69.8
LR 60.4 53 43.4 36.6 80.4 77.6 69.4 57.2 91 89.8 82.6 73.2
NEW 48.2 43.6 35 30.6 71.2 64.6 60.6 46.2 83.6 83.2 74.6 66.8
LIN 51 46 36.8 32.6 74.8 68.6 63.2 47.8 87.2 86.4 78 68.2
MAX 59.4 52.2 42.8 36.2 80.2 76.6 67.4 53.2 90.8 89.4 82.2 72.2

Configuration (b)
WKM 26.6 35.8 52.8 70.8 36.6 53.2 75.8 88.2 43 65.2 86.6 97
LR 26 27.8 36.6 53 33.4 41.6 50 77.6 41.2 53 68.8 86
NEW 53.6 59.8 69.2 71.8 72.8 80 87.2 90.4 83 90 96 98.2
LIN 38.8 47.2 59.8 71 56 68.2 83.2 88.8 65.4 81 92.4 97.8
MAX 58.8 63.4 71.2 74.6 75.4 82.4 88.6 91.8 85.4 90.8 96.6 98.4

Configuration (c)
WKM 9.2 6.2 12.6 29.6 15.6 6.6 14.8 38.2 25.6 7.6 14.8 44.8
LR 27.8 15 6.8 12.6 91.6 2.3 6.2 71 57.8 26.8 5.4 10.6
NEW 12.8 19.8 30.8 47.4 17.6 25.6 44 60.6 17.4 29.4 61.8 73.2
LIN 9.8 10.4 20.8 37.8 7.4 9.8 26.6 49.4 8 8.8 35.8 60.2
MAX 23.8 24.2 34.6 50.2 37.4 32.6 46 62.4 46.6 40 64.6 75.4

Configuration (d)
WKM 36.6 51 68.6 73 45 66.4 85.2 93.6 51.6 78.6 94 98
LR 22.2 27.6 46.4 58.8 21.6 42.4 62.4 81.6 30.6 48.6 75.8 92.2
NEW 65 71.2 78.6 76 82 89 93.2 93.6 92 96.4 97.8 98.8
LIN 49.6 61.6 74.6 74.4 66.8 79 89.6 93.8 76.4 90 96.8 98.6
MAX 67.6 73.2 80.4 77.2 84.6 90.6 93.6 95.2 93.6 96.6 97.8 98.8
a n1 = n2.
b % censored.

TABLE I
SIZE AND POWER OF TEST FOR SURVIVAL CONFIGURATION, α = 0.05.

Simulations were performed at censoring proportions of 30%, 40%, 50%, and 60%, where two groups were compared with
sample sizes of n1 = n2 =30, 50, and 70. For each sample size drawn from the unit exponential distribution with λi, i = 1, 2,
the number of iterations in a simulation was 500. Based on the 500 iterations, Table 1 presents results of empirical size and
power of the tests under various survival configurations depicted in Figure 1. In the table, WKM, LR, NEW, LIN and MAX
denote the weighted Kaplan-Meier test, the log-rank test, the proposed test, the linear combination of the proposed and WKM
tests, and the maximum of the proposed and WKM tests.

The random experiments can be modeled as a sequence of Bernoulli trials, based on a number of simulations. In our case,
since the number of simulations is 500, the estimated error rate is about

√
(1− 0.95)× 0.95/500 ≈ 0.01 at the α = 0.05

significance level. Thus, the overall results in Table 1 indicate that under the null hypothesis, all the tests appear to provide
acceptable empirical significance levels that are close to the nominal level α = 0.05 in various situations.

It is well-known that the log-rank test has optimum power when the hazard rates of two groups are proportional to each other,
so it should be quite sensitive to the proportional hazards alternative with the weight distributed evenly. As presented from the
results of the proportional hazards case, Table 1(a) suggests that the log-rank test (LR) is the most powerful test in detecting
the proportional hazards alternatives, having the highest power among all the tests. It seems that MAX is comparable to LR for
all samples of any size at every censoring level, but MAX has slightly lower power consistently than LR, although some are
slightly off from the nominal level. From the results in Table 1(b) with the early survival difference alternative, the performance
of MAX is seen to be superior to all the comparator tests, though not substantially better than NEW. It is plausible to say that
the proposed test seems as powerful as MAX, outperforming WKM, LR and LIN. Survival curves cross at an early time in the
configuration (c) of Figure 1, so, late survival differences are relatively more pronounced than early survival differences. In line
with this, Table 1(c) presents that for the WKM and log-rank tests, power decreases as the censoring percentages varies from
30% to 40%, and then increases. It is not surprising that for right-censored data, which is our case, late survival differences
are becoming less apparent as the censoring percentage increases. These phenomena could occur more notedly when data are
heavily censored, since the later time period contributes almost nothing to the power by right-censoring. On the other hand,
it seems that NEW, LIN, and MAX are unaffected significantly by the crossing of the survival curves. When data are lightly
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Fig. 2. Estimated survival functions for the tongue cancer study.

censored (30%), the log-rank test performs well. However, NEW and MAX tend to have higher power than other tests as
the censoring proportion increases. Overall, MAX appears preferable to NEW, but their differences in power seem to be not
substantial. In Table 1(d), crossing survival curves is present at a quite middle time point, which implies prolonged survival in
one group relative to the other. The results suggest that LR is inferior to all other tests. This is clearly related to the violation
of the proportional hazards assumption. However, when censoring is heavy in the presence of crossing survival curves, the
assumption would be somewhat met. Our results show that these phenomena tend to be conspicuous when the sample size is
large. For example, with the sample size of n = 70, LR has power of 92.2% at the 60% censoring level, which suggests that it
is comparable to other tests. The tests, NEW and MAX, appear to achieve higher power than other tests across a broad range
of survival differences. Though the results show the superior performance of MAX to NEW, their difference in power is not
substantial. In summary, the results in Table 1 indicate that overall, NEW and MAX perform better than WKM, LR, and LIN
for various situations considered, and can be used as a useful tool, especially when survival differences of two groups are not
able to be specified in advance.

B. Application

The procedures based on the proposed weight function were applied to a real-world clinical data set from the literature.
The data set concerns death times (in weeks) of patients with tongue cancer. Tongue cancer is a type of mouth cancer that
can develop in any part of the mouth, forming a tumor by its accumulation. A study of the prognostic effect of ploidy on
the survival of patients diagnosed with tongue cancer was conducted. In this study, 80 patients are divided into two groups
(n1 = 52, n2 = 28) according to tumor DNA index, one having an aneuploid (abnormal) DNA profile and the other with the
diagnosis of a diploid (normal) DNA. The censoring percentage is 27/80 ≈ 34%. Details about the study, including data, can
be found in Klein and Moeschberger [9]. Figure 2 depicts Kaplan-Meier survival functions of the two groups, Ŝ1(t) and Ŝ2(t),
with aneuploid and diploid, respectively. The estimated survival curves in Figure 2 indicate that the group with the aneuploid
DNA may have a higher survival rate than the group with the diploid DNA, suggesting that the hazard ratio may change over
time. Our interest in this study is to test the hypothesis that the survival rates of the two groups with aneuploid and diploid
tumors are the same against the alternative telling the difference. The LR, WKM, NEW tests yield p−values of 0.098, 0.076
and 0.067, respectively. With the estimated correlation being equal to 97%, the LN and MAX tests give the p−values of 0.071
and 0.063, respectively. The p−value, 0.098, of the LR test tells us that it is likely to fail to detect the difference of two
survival curves, leading to the conclusion that the two groups have the same survival rate. On the other hand, the NEW, LN
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and MAX tests substantiate the conjecture that somewhat differences in the survival rates of the groups may exist. The result
from the WKM test is relatively less affirmative to validate the difference, when compared to the proposed methods.

IV. REMARKS

There may exist several different types of survival difference, such as crossing survival functions. Of interest in medical
research is a long-term comparison of two underlying survival distributions with right-censored data. This paper improves the
WKM statistic in order for it to be an effective tool to use in such case. The procedures are based on some weight function
incorporated with the censoring level of the sample data as a component. Some versatile test procedures that are robust and
sensitive to various survival differences are also considered. Simulation results demonstrate the superior behaviors of the new
method to the WKM statistics, yielding higher power than the WKM test across a broad range of survival differences. The
procedures with the proposed weight function for comparing the equality of two survival curves are illustrated in a tongue
cancer data set.
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