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A Pair of Three-Step Hybrid Block Methods
for the Solutions of Linear and Nonlinear
First-Order Systems

Joshua Sunday, Chibuisi Chigozie, Ezekiel O. Omole and John B. Gwong

Abstract — In this research paper, a pair of three-step hybrid block methods is derived for the
solutions of linear and nonlinear first-order systems. The derivation is carried out with the aid of
collocation and interpolation technique and the adoption of power series as basis function. The
first and second three-step hybrid block methods are derived by incorporating a single and
double off-grid point(s) respectively within the three-step integration interval. The methods
derived were then applied on some linear and nonlinear first-order systems to test their accuracy
and efficiency. The results obtained show that the three-step hybrid block method with two off-
grid points performed better than the three-step hybrid block method with one off-grid point. It
was also clear from the results obtained that the two methods derived performed better than the
existing methods with which we compared our results. We further analyzed the basic properties
of the methods derived. These properties include zero-stability, consistence, convergence and
region of absolute stability.
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I. INTRODUCTION

In this paper, we shall derive a pair of three-step methods for the solution of linear and nonlinear first
order systems of the form,

y'(x):f(xay)a y(xo):yo
(1

where f 1R x R — R;v,y, €R?, and ¢ is the dimension of the system. The function [ is

assumed to satisfy the Lipschitz condition stated in the Theorem below.

Theorem 1 [1]
Let f (x, y) be a function, defined and continuous for all points (x, y) in the region D defined by

a<x<b,~0<y<w), aand b finite, and let there exist a constant L such that, for every X, y, V"
such that (x,y) and f(x,y") arebothin D,

e = £y < Ly -y
)

Then, if n is any given number, there exists a unique solution Y(X) of the initial value problem (1),

where y(X) is continuous and differentiable for all (x,y) in D. The requirement (2) is known as a

Lipschitz condition and the constant L as a Lipschitz constant.
A lot of algorithms and methods have been proposed by scholars for the solution of first-order stiff
systems of the form (1), these authors among others include [2]-[9].
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However, it is important to state that these methods have some setbacks ranging from small
convergence/implementation region to inefficiency in terms of accuracy. In view of these setbacks, we are
motivated to formulate a pair of three-step hybrid block methods that will address some of these setbacks.
The proposed methods have the advantage of generating simultaneous numerical approximations at
different grid points within the interval of integration. Another advantage of the methods is that they are
less expensive in terms of the number of function evaluations compared to the conventional linear multistep
and the Runge-Kutta methods. They also preserve the traditional advantage of one-step methods of being
self-starting and permitting easy change of step-size during integration, [10].

II. DERIVATION OF THE THREE-STEP HYBRID BLOCK METHODS

In this section, a pair of three-step hybrid block methods of the form,

AV, = Ey, +hdf (v,)+ hbf (¥,,)
3)

where A", E, d and b are (7 —1)x (7 — 1)matrices shall be derived for the solution of linear and
nonlinear first order systems of the form (1). To achieve this, we approximate the exact solution y(x) to

(1) by assuming an approximate solution ¥ (x) in the form,

r+s—1

Y(x)= Z P,0;(X)
“)

where 7 and § are the numbers of collocation and interpolation points respectively, X € [xo, X, ] , D;
are undetermined coefficients that must be obtained and @, (x) are basis polynomial function of degree
r+s—1.

A. Three-Step Hybrid Block Method with One Off-Grid Point
To derive the three-step hybrid block method with one off-grid point, we carryout interpolation at

1
X s = — and collocation at x

n+s2 n+r?

r= 0,%, 1,2,3 as follows,

5

j 1
: :pjxn+s = Vpisr S =
J=0

2
(5)
5 ) 1
Z]plx’i;l = Jntrs VZO,—,1,2,3
J=0 2
(6)

Equations (5) and (6) gives a system of nonlinear equation of the form

XA=U
(7

Where,

T
A=[a, a a, a; a, as] . U=|y, f, fn+1 Joa Jua Sus
2
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I x X7 X Xt X
n+— n+— n+— n+— n+—
2 2 2 2 2
2 4
0 1 2x 3x; 4x 5x,
2 3 4
1 2x 3x7 4x ,  5x7,
X = i e e e
2
0 1 2xn+1 3xn+1 4xn+1 5xn+1
2
0 1 2xn+2 3xn+2 4xn+2 5xn+2
2
_0 1 2’xn+3 3xn+3 4xn+3 5xn+3
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Solving the system of nonlinear equation by Gauss elimination method for the p, 's, j=0(1)Sand

substituting back into (4) gives a continuous three-step hybrid block method with one off-grid point of the

form,

Y()=a, (0)y +h[2ﬂk W+ B, ]
(®)

where

al(x):l

2
By (x)= L(384t5 —~3120¢* +8960¢* ~11040¢” +5760¢ ~1057 )
5760

1
x)=———(48¢ —360¢" +880¢’ —720¢* +91
ﬁg( ) 225( )

ﬂ(x):—~414(384ﬁ-—2640ﬂ-+5440ﬁ-—2880ﬁ-+193)

19

/%(x)-— (384t-—2160t +32007° 1440t2+83)

Bi(x )— (384t —1680¢* +2240¢° —960¢” +53)
©)

and ¢ is given by

(10)

1
Evaluating (8) at = > 1,2,3 gives the new discrete three-step hybrid block method with one off-grid

point of the form (3) as
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5760 |r
1000 yn% 0001 y,,,% 59 |70t
000 —
01 (; 0 yn+1 = 000 i y;rl +h ??0 .fnfl
ggo? Vuer ggglynfz 000 = Joa
yn+3 yn 3 fn
000 —
L 40 |
(91 193 83 53 |
2251920 5760 28800 |
1219 11 [Ty
Lpl 225 1200 360 1800 || £
64 16 19 4 7
- — — i n+2
225 15 45 225 P
4 9 57 e |7
25 40 40 200 (11)

B.  Three-Step Hybrid Block Method with Two Off-Grid Points

For three-step hybrid block method with two off-grid points, we interpolate at x

14505 = — and collocate
2
1.3 o
at x, .., = 0,—,1,—,2,3. This gives,
22
6 4 3
ijx){+s = yn+s’ §== (12)
j=0 2

3
1:»_9293 13
> (13)

6 ) 1
szjx}i;i :f;q+r’ r=0,—-,
J=0 2

Equations (12) and (13) will together give a system nonlinear equation of the form (7), where

T
T
A:[ao a a, a, 4, ds aé] U=y, [, f,,+l St fn+g S fn+3}
2 2

2 4
I x X", X, X X, X
n+= n+= n+= n+= n+= n+=
2 2 2 2 2 2
2 3 4 5
0 1 2x, 3x, 4x; 5x, 6x
2 3 4 5
0 1 2x 3x*,  4x, Sx7, 6x
n+— n+— n+— n+— n+—
2 2 2 2 2
- 2 3 4 5
X={0 1 2xn+l 3xn+1 4xn+1 5xn+1 6xn+1
2 3 4 5
0 1 2x 3x*,  4x, SxT,  6x
n+— n+— n+— n+— n+—
2 2 2 2 2
2 3 4 5
0 1 2Xn+2 3Xn+2 4xn+2 5xn+2 6xn+2
2 3 4 5
0 1 2‘xn+3 3‘xn+3 4‘xn+3 5xn+3 6‘xn+3

Similarly, solving the system of nonlinear equation by Gauss elimination method for the
p; 's, j =0(1)6 and substituting back into (4) gives a continuous three-step hybrid method with two off-
grid points of the form,

Y(x)= a5 (x)yn+§ +h(zﬁk () S + 5 (x)f,,J,l +,B3(x)fn+3] (14)

2 Jj=0 2

where
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a;(x)=1
2
B,(x) = —L(640t6 —61441° +22800¢' —41600¢ +38880¢> ~17280¢ +2781)
17280
,81 (x) = (64t —576° +1920¢" — 28801 +1728¢" — 243 ) (15)
Bi(x)=— (640t —5376° +16080¢* —20160¢° + 86401 +729)
pg (=050 (320z —2496¢° +6720¢* ~7360¢° +2880¢> ~351)
Br(x)= 0(640t(’—46081 +11280¢* 11520t3+4320t2—243)
B(x)= 3 0(128/’ 768:° +1680¢* ~1600¢° +5761° ~27)
1,3
and ¢ as defined in (10). Evaluating (14) at ¢ = > 1, E 2,3 gives the new discrete three-step hybrid
block method with two off-grid points of the form (3) as
00 0O &
_ _ _ - 5760 r
- -1V - 1Y 1
10000 ] »5| [00001] " 00001106890 "
0 1 0 0 O yn+1 0 0 O 0 1 yn—l 103 ﬁ1—1
00100 yn+3200001yn_3+h0000% fn_é
00010 2 00001 7
00001 |7 [oo0o001)/¥=| 0000 = |/
L _ L _ 45
yn+3 _yn i 11 _f‘n
0000 —
L 40
(35 487 49 211 1 |
72 1920 360 5760 640 |-
28 7 [
45 120 135 360 1080 f
n+l
I 22 R E R VA O
40 640 40 640 640 n+3
2 4 32 7 0 ||
45 15 45 45 ) (16)
O ﬁ ~ 8 g H | J n+3
i 40 5 40 40

III. ANALYSIS OF THE THREE-STEP HYBRID BLOCK METHODS

In this section, some basic properties of the pair of three-step hybrid block methods shall be analyzed.
These properties among others include the order, consistency, zero-stability, convergence and stability
region.

A. Order and Error Constants of the Three-Step Hybrid Block Methods
The linear operator L{y(x); h} of the three-step method of the form (4) is defined as,

L{y(x);h} =AY, —Ey, —hdf (y,)—hbf (¥,) (17)

Taking the Taylor series expansion of (17) and comparing the coefficients of /1 gives,
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L{y(x);h} = c,y(x) +c,hy'(x) +c,h’ y "(x)

p+l . p+l (18)
"y (x) +...

+..+c, "y’ (X)+c,,

Definition 1 [11]

A method is said to be of order p if p is the largest positive integer for which

Co = C1 = Cz =.= Cp =0, CP+1 # 0. The term cp+1 is called the error constant of the method. Suffice

to say that the order of a method quantifies the rate of convergence of a numerical approximation of a
differential equation to that of the exact solution. On the other hand, the error constant is the accumulated
error when the order of a method has been computed.

Therefore, the Taylor series expansion of the three-step hybrid block method with one off-grid point is,

- l J . ) | _O_
g(i) V=Y, —%hy; —,2]1;%5*1 {29215(3, ) 1199230(1)‘/ " sjzo(z)j ) 2858300(3)‘/}
S 85 (B o gor ]|
g(i)!iyi—yn—jéhy;_gh;l y",-+,{26245[;)~’ 1?(1) 2(2)/_;;5(3)/} 0 )
_2(3)'/ ,{—yn—i)hy;_gh;? i {i(;jj+“9()(l)j +i(7)(2)’+26030(3),f} | o]

Thus, Z‘o = El = 22 = 2'3 = 24 = 25 = 6; implying that the order of the three-step method with one off-
grid point is p = [5 555 ]T. That is, the method is of uniform order 5.

The error constant is given by [6.3802x10 2.7778x10™ 3.3333x10° ~7.5000x10" |
Similarly, the Taylor series expansion of the three-step hybrid block method with two off-grid points is
given by,

1)’
- (E 959 . &Y, 35(1)’ 487 9(3} 211 1 .l 0]
hy, - TR Et (R [ Ta)) U A L
Z STV 60 ™ ; o {72 2) “1920") * 360 5760 *a0®)
= (1) 169 . &RhT 32(1)-" ( j 1 .y
VN LAy )21 ) 3
Z T 0g0 ,ZO o7 asl2 +120 +13302) 360 *og0 ) 0

3)’
& (2 ; 103, . &R L |27(1Y 243, 1 ;

-y, ———hy, - MY | == —(3 =0
Z J! I T 40" Z ! T 13002 640( 640 640()

Jj=0

(2) 7 T 32(ljj+i(1)f 32(3] +l(2)’+0(3)f

(O8]

. T
j§:0 R }ZO aasi2) s 45 45 0
=(3) 1, & [1)’ 81 8(3jj 81, v 11,y

—y,——hy, - "o = )Y =22 +3-(2) +—(3
Zo I g /Z; IARE 2003515 *35® + 360 0]

(20)

Thus, co =c¢1 =C2 =3 =4 =5 =g =(); implying that the order of the three-step method with
two off-grid pointsis , —[6 6 6 6 6] -Thatis, the method is of uniform order 6. It’s error constant

is given by

[—1.3589><1o41 —9.0939%x107° —1.2556x10" —6.6138%x107° —2.0089x10’3]T
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B. Consistency of the Three-Step Hybrid Block Methods
Recall that a method is consistent if it has order p = 1, [11]. Thus, the three-step hybrid block method
with one off-grid point (11) is consistent since it is of uniform order p =5 > 1. Also, the three-step hybrid
block method with two off-grid points (16) is consistent since it is of uniform order p = 6> 1. Consistency
controls the magnitude of the local truncation error committed at each stage of the computation.
C. Zero-Stability of the Three-Step Hybrid Block Methods
Definition 2 [10]
A block method is said to be zero-stable, if the roots z s =1,2,....,k of the first characteristic

polynomial p(z) defined by p(z)=det(zA" —E) satisfies

ZS| <1 and every root satisfying

zZ|= 1 have multiplicity not exceeding the order of the differential equation.

For the three-step method with one off-grid point (11), the first characteristic polynomial is given by,

1000 0001 z 0 0 -1
) 0100 0001 0 z 0 -1 3( )
= — = =z (z—
P 0010 looot1]| Jo 0 z —
0001 0001 0 0 0 z-1
Thus, solving for Z in
2(z-1)=0 2

gives z, =2z, =2, = 0 and z 4= 1. Hence, the three-step hybrid block method with one off-grid
point is zero-stable. Applying the same procedure for the three-step hybrid block method with two off-grid
points (16), we obtain z, =z, =z, =z, = 0 and Z; = 1, implying that it is also is zero-stable.

D. Convergence of the Three-Step Hybrid Block Methods

Theorem 2 [10]

The necessary and sufficient conditions for the linear multistep method to be convergent are that it be
consistent and zero-stable.

Therefore, the two three-step methods derived in (11) and (16) are both convergent since they are
consistent and zero-stable, [10].

E. Regions of Absolute Stability of the Three-Step Hybrid Block Methods

Applying the boundary locus method, the stability polynomial of the three-step hybrid block method
with one off-grid point (11) is given by,

Z(w):—h“[l 3—iw4)—h3[£w4+6—7w3)+h2(lw4—2w3j
8 40 120 120 10 10 (22)
—h Ew4+1—7w3 +w* —w?
10 10

Therefore, the region of absolute stability of the three-step hybrid block method with one off-grid point
is shown in Fig. 1.
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Fig. 1. Stability region of the three-step hybrid block method with one off-grid point.

The stability region obtained in Fig. 1 is A-stable. Note that the stability region is the interior of the
curve.

On the other hand, the stability polynomial of the three-step hybrid block method with two off-grid points
(16) is given by,

h(w)z—(lw5 +1w4j+h4(9w5 —29w4)—h3[13w5 +29w4j
160 32 160 160 48 48 (23)
+h’ Bws—ﬂw“ —h iweréw4 +w —w'
24 24 3 3

Thus, the region of absolute stability of the three-step hybrid block method with two off-grid points is
shown in Fig. 2.
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Fig. 2. Stability region of the three-step hybrid block method with two oft-grid points.

The stability region obtained in Fig. 2 is also A-stable.

IV. NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS

A. Numerical Experiments

The newly derived three-step hybrid block methods shall be applied in solving linear and nonlinear
systems of equations of the form (1). From the numerical experiments, the results so obtained shall be
presented in tabular form. The following notations shall be used in the tables below:

3SHM10O-Three-step hybrid block method with one off-grid point

3SHM20O-Three-step hybrid block method with two off-grid points

Problem 1
Consider the linear stiff system in the range 0 < x <1 solved by [4],

{M'(x)}:{_l 95}{)’1@)} |:y1(0):|:|:1:|
¥, '(x) -1 =97 »,(x) ’ ,(0) 1 (24)

whose exact solution is given by,
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—2x —95x
», (%) 1 |95e 48e¢ 25)

¥, (x) - E 48¢79% _ 2%

The eigenvalues of the Jacobian matrix are ﬂ.l =-2, 22 =—96 with the stiffness ratio 1:48

TABLE I: COMPARISON OF THE ABSOLUTE ERRORS IN 3SHM10 AND 3SHM20 WITH THAT OF [4] FOR PROBLEM 1

Error in Error in

h i 3SHMIO  3SHM20 Error in [4]
2.1998 4.1562 B
0.0625 "1 x 10715 x 10714 3%107%
5.1273 8.7325 o
2 x 10713 x 10716 4x10

Problem 1 was solved at the step size # = 0.0625 in order to compare our result with that of [4]. The
results obtained clearly depict that both 3SSHM10 and 3SHM2O performed better than that of [4].

Problem 2

Consider the linear mildly stiff system,

{yl '(x)}:{ 998 1998}?@)} {yl(O)}:H

7@ =999 1999 || y,(0) ] [ 1,(®)] |1 26)

The exact solution of the linear system of equations above is given by,

y1 (X) B 4efx _3671000)5

27)
y2 (x) _2e—x +3e—1000x

It is important to state that the eigenvalues of the Jacobian matrix are ll =-1, Az =—1000 with the
stiffness ratio 1:1000.

TABLE II: COMPARISON OF THE ABSOLUTE ERRORS IN 3SHM10 AND 3SHM20 WITH THAT OF [2] FOR PROBLEM

2
Error in Error in Error in [2]
x i 3SHMIO  3SHM20
1.2352 2.1372 1.3920
3 r1 x 10713 x 10715 x 10711
2.3527 8.7325 6.9700
Y2 x 10~13 x 10-16 x 1012
3.1562 2.3372 3.3628
40 ¢! x 10716 x 10718 x 10712
3.1625 41783 1.6818
2 x 10716 x 10718 x 10712
42561 3.2891 3.9325
70 ¢! x 1071 x 10721 x 10713
3.6172 3.2891 1.4664
2 x 10720 x 10722 x 10713

Problem 3
Consider the well-known nonlinear two-dimensional Kaps problem in the range 0 < x < 20 solved by

(7],

7'@) ] [-1002y,(x)+1000y; (x) | [1(0)] [1

7@ | a@-n@nE) | o] 1 28)
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The exact solution is given by,

—2x

(%) _|e€

= 29
Y, (x) e’ 2

The absolute error at the /1 the step size and N the number of computation steps are presented in Table
1.

TABLE III: COMPARISON OF THE ABSOLUTE ERRORS IN 3SHM10 AND 3SHM20 WITH THAT OF [7] FOR PROBLEM

3
Error in Error in .
x Ny 3SHMIO  3SHM20 Error in [7]
s . 45627 1.6661 2.1670
1« x 10~13 x 1070
3.3316 12112 13507
2 x 10797 x 10710 x 10795
45471 1.6514 2.3329
1258 m x 10-13 x 1070
3.3616 1.3507 2.8914
Yz 10707 x 10710 x 10705
45317 1.6445 2.3078
0833 12 » x 10711 x 10713 x 10799
3.5112 1.3722 2.9695
Y x 10797 x 1010 x 10795
45164 1.6317 2.2987
0:625 16y jou x 10~13 x 1070
3.4072 13978 2.9986
Y x 10797 x 10710 x 10795
45090 1.6126 2.2948
0520y x 10~13 x 1070
3.4611 1.4155 3.0115
Yz 10707 x 10710 x 10705
Problem 4
Consider the nonlinear system solved by [9],
, )
¥, '(x) |2 1 »(x) N 2sinx (0) |2
- . 9 -
¥, '(x) 998 =999 || »,(x)| |999(cosx—sinx)| | y,(0)| |3 (30)
The exact solution is given by,
»(x) 2¢" +sinx on

¥, (x) 2e " +cosx

The absolute error at the end point X =10 and / the step size are presented in Table IV.

TABLE IV: COMPARISON OF THE ABSOLUTE ERRORS IN 3SHM10 AND 3SHM20 WITH THAT OF [9] FOR PROBLEM

4
X Error in Error in Error in [9]
e 3SHMIO  3SHM20
1.15622 3.52617 450751
0.25 7 x 10714 x 10715 x 10714
453625 3.57261 4.84057
Ve x 1014 x 1015 x 1014
453627 5.71256 9.85878
0.5 N x 10714 x 10715 x 10714
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455142 575123 9.81437

Y2 x 10714 x 10715 x 10714

5.12356 6.66782 9.45910

1.0 26! x 10714 x 10715 x 10714
523781 6.78312 9.45792

2 x 10714 x 10715 x 10714

2.17827 3.12367 1.68310

2.0 26! x 10714 x 10715 x 10713
221627 3.34516 1.68365

2 x 10714 x 10715 x 10713

3.51452 478162 221378

4.0 26! x 10714 x 10715 x 10713
357726 4.85263 2.23044

2 x 1014 x 1015 x 1013

2.27812 5.26735 1.01363

6.0 N x 10714 x 10715 x 10713
2.28192 552673 1.01474

2 x 1014 x 1015 x 1013

2.90273 7.73564 1.93401

8.0 r1 x 10714 x 10715 x 10713
2.94152 7.93544 1.94650

Y2 x 10714 x 10715 x 10713

5.72863 9.83644 6.10623

10.0 r1 x 1014 x 1015 x 1013
5.55265 9.99836 6.09068

Y2 x 10714 x 10715 x 10713

B. Discussion of Results

From the results presented in TABLES I-1V, it is clear that the two three-step hybrid block methods
derived are efficient and computationally reliable in solving the linear and nonlinear stiff systems of the
form (1). It is also clear that the three-step hybrid block method with two off-grid points (16) performed
better than the three-step hybrid block method with one off-grid point (11). The stability regions obtained
show that both methods are A-stable, see Fig. 1 and Fig. 2.

V. CONCLUSION
A pair of three-step hybrid block methods has been derived in this research. The methods derived were
applied in solving linear and nonlinear systems of first order differential equations. The results obtained
showed that the methods derived performed better than the ones with which we compared our results. The
methods derived were also found to be stable, consistent, zero-stable and convergent.
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