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Fuzzy e-paraopen Sets and Maps in Fuzzy
Topological Spaces

M. Sankari and C. Murugesan

Abstract

This article is to study the concepts of fuzzy e-paraopen and fuzzy e-paraclosed sets in fuzzy topological spaces. Further, we
extent to study few class of fuzzy maps namely fuzzy e-paracontinuous, ∗-fuzzy e-paracontinuous, fuzzy e-parairresolute, fuzzy
minimal e-paracontinuous, fuzzy maximal e-paracontinuous mappings and study their properties.

Index Terms

Fuzzy e-paraopen, fuzzy e-paracontinuous, fuzzy minimal e-paracontinuous, fuzzy maximal e-paracontinuous.

I. Introduction
Zadeh [10] established fuzzy sets and since fuzzy topology developed by Chang [2]. The notions of fuzzy minimal(maximal)

open and paraopen sets respectively explored by Ittanagi and Wali in [3] and [4]. Subsequently Mukherjee and Bagchi in
[1] introduced and showed the notion of mean open set. In section II of current article we introduce the perception of
fuzzy e-paraopen set and investigate some comparative results. In section III, we introduce fuzzy e-paracontinuous, ∗-fuzzy
e-paracontinuous, fuzzy e-parairresolute, fuzzy minimal e-paracontinuous, fuzzy maximal e-paracontinuous maps and from
which we investigate some results with appropriate examples. Throughout this paper following terminologies “fuzzy e-open,
fuzzy e-paraopen, fuzzy e-paraclosed, fuzzy minimal e-open, fuzzy minimal e-closed, fuzzy maximal e-open, fuzzy maximal e-
closed are respectively abbreviated as Fe-O,Fe-PO,Fe-PC,FMIe-O,FMIe-C,FMAe-O,FMAe-C respectively. Throught this paper
𭟋 and Y stands for fuzzy topological spaces.”

The following terminologies “fuzzy e-continuous, fuzzy e-paracontinuous, fuzzy minimal e-continuous,fuzzy maximal e-
continuous, fuzzy minimal e-paracontinuous, fuzzy maximal e-paracontinuous, fuzzy maximal e-parairresolute are respectively
abbreviated as f.e-c,f.e-pc,f.mi.e-c,f.ma.e-c,f.mi.e-pc,f.ma.e-pc,f.mi.e-p.i,f.ma.e-p.i respectively”

Definition 1.1 A fuzzy subset ξ of a space 𭟋 is called fuzzy regular open [3] (resp. fuzzy regular closed) if ξ =Int(Cl(ξ))
(resp.ξ =Cl(Int(ξ))).

The fuzzy δ-interior of a fuzzy subset ξ of 𭟋 is the union of all fuzzy regular open sets contained in ξ. A fuzzy subset ξ is
called fuzzy δ-open [9] if ξ = Intδ(ξ). The complement of fuzzy δ-open set is called fuzzy δ-closed (i.e., ξ = Clδ(ξ)).

Definition 1.2 A fuzzy subset ξ of a fts 𭟋 is called fuzzy e-open [8] if ξ ≤cl(intδξ)∪int(clδξ) and fuzzy e-closed set if
ξ ≥cl(intδξ)∩int(clδξ).

Definition 1.3 [7]A proper nonzero fuzzy e-open set α of 𭟋 is said to be a
(i)fuzzy minimal e-open if 1𭟋 and α are only fuzzy e-open sets contained in α.
(ii)fuzzy maximal e-open1𭟋 and α are only fuzzy e-open sets containing α.

Definition 1.4 A map from fts 𭟋 to another fts Y is called,
(i) fuzzy minimal e-continuous[7] if f −1(λ) is a fuzzy e-open set on 𭟋 for any fuzzy minimal e-open set λ on Y .
(ii)fuzzy maximal e-continuous[7] if f −1(λ) is a fuzzy e-open set on 𭟋 for any fuzzy maximal e-open set λ on Y .

II. Fuzzy e-paraopen and Some of their Properties
Definition 2.1 A Fe-O set β of a fts 𭟋 is said to be a Fe-PO set if is neither FMIe-O nor FMAe-O set.

The complement of Fe-PO set is Fe-PC set.
Remark 2.2 It could be clear from definitions that every Fe-PO set is a Fe-O set and every Fe-PC set is a Fe-C set converse

is not true as shown in the succeeding example.
Example 2.3 Let β1,β2, β3 and β4 be fuzzy sets on 𭟋 = {a, b, c} . Then β1 =

0.5
a +

0.8
b +

0.8
c , β2 =

0.5
a +

0.8
b +

0.9
c β3 =

1.0
a +

0.9
b +

0.8
c

and β4 =
1.0
a +

0.9
b +

0.9
c be fuzzy sets with F1 = {0𭟋, β1, β2, β3, β4, 1𭟋}, Then FMiO(𭟋) = {β1},FMaO(𭟋) = {β4}, FMiC(𭟋) =

{
βc

4

}
,

FMaC(𭟋) =
{
βc

1

}
,FPaO(𭟋) = {β2, β3}, FPaC(𭟋) =

{
βc

2, β
c
3

}
. Here β1 is a Fe-O set but not a Fe-PO set and βc

4 is a fuzzy e-closed
set but not a Fe-PC set.
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Remark 2.4 The succeeding example revealed that union and intersection of Fe-PO (resp. Fe-PC) sets need not be a Fe-PO
(resp. Fe-PC).

Example 2.5 In example 2.3, fuzzy sets β2, β3 are Fe-PO sets but β2 ∨ β3 = β4 and β2 ∧ β3 = β1 which are not Fe-PO sets.
Similarly for the Fe-PC sets βc

2,βc
3 but βc

2 ∨ β
c
3 = β

c
1 and βc

2 ∧ β
c
3 = β

c
4 which are not Fe-PC sets.

Theorem 2.6 Let α be a nonzero proper Fe-PO subset of 𭟋. Then there exists a FMIe-O set β such that β < α.

Proof. Since the definition of FMIe-O set, we can conclude that β < α. □

Theorem 2.7 Let α be a nonzero proper Fe-PO subset of 𭟋. Then there exists a FMAe-O set P such that α < P.

Proof. Since the definition of FMAe-O set, we can conclude that α < P. □

Theorem 2.8 (i)Let α be a Fe-PO and β be a FMIe-O set in 𭟋. Then α ∧ β = 0𭟋 or β < α.
(ii)i)Let α be a Fe-PO and τ1 be a FMAe-O set in 𭟋. then α ∨ τ1 = 1𭟋 or α < τ1.
(iii)Intersection of Fe-PO sets is either Fe-PO or FMIe-O set.

Proof. (i) Let α be a Fe-PO and β be a FMIe-O set in 𭟋. Then α ∧ β = 0𭟋 or α ∧ β , 0𭟋. Suppose α ∧ β = 0𭟋, then we need
not prove anything. Assume α ∧ β , 0𭟋. Then we get α ∧ β is a Fe-O set and α ∧ β < β. Hence β < α.

(ii) Let α be a Fe-PO and γ be a FMAe-O set in 𭟋. Then α ∨ γ = 1𭟋 or α ∨ β , 1𭟋. Assume α ∨ γ = 1𭟋, then we need not
prove anything. Suppose α ∨ γ , 1𭟋. Then we get α ∨ γ is a Fe-O set and γ < α ∨ γ. Since γ is a FMAe-O set, α ∨ γ = γ
which implies α < γ.

(iii)Let α and ηbe a Fe-PO sets in 𭟋. As α∧η is a Fe-PO set then we need not prove anything. Assume α∧η is not a Fe-PO
set. Since definition, α∧η is a FMIe-O or FMAe-O set. If α∧η is a f.mi. e-open set then we need not prove anything. Suppose
α∧ η is a FMAe-O set. Now α∧ η < α and α∧ η < η which contradicts the fact that α and η are Fe-PO sets. Therefore α∧ η
is not a FMAe-O set. That is α ∧ η must be a FMIe-O set. □

Theorem 2.9 A subset τ1 of 𭟋 is Fe-PC iff it is neither FMAe-C nor FMIe-C set.

Proof. Since the definition of FMAe-C set and the fact that the complement of FMIe-O set is FMAe-C set and the complement
of FMAe-O set is FMIe-C set. □

Theorem 2.10 Let 𭟋 be a fts and τ1 be a nonzero Fe-PC subset of 𭟋. Then there exists a f.mi.e-c set P such that P < τ1.

Proof. Since the definition of FMIe-C set we can conclude that P < τ1. □

Theorem 2.11 Let 𭟋 be a fts and τ1 be a nonzero Fe-PC subset of 𭟋. Then there exists a f.ma. closet set Q such that τ1 < Q.

Proof. Since the definition of FMAe-C set we can conclude that τ1 < Q. □

Theorem 2.12 Let 𭟋 be a fts.
(i)Let δ be a Fe-PC and τ be a FMIe-C set. Then δ ∧ τ = 0𭟋 or τ < δ.
(ii)Let δ be a Fe-PC and γ be a FMAe-C set. Then δ ∨ γ = 1𭟋 or δ < γ.
(iii)Intersection of Fe-PC sets is either Fe-PC or FMIe-C set.

Proof. (i) Let δ be a Fe-PC and τ be a FMIe-C set in 𭟋. Then (1𭟋 − δ) is Fe-PO and (1𭟋 − τ) is FMAe-O set in 𭟋. By Theorem
2.8(ii) we have (1𭟋 − δ) ∨ (1𭟋 − τ) = 𭟋 or (1𭟋 − δ) < (1𭟋 − τ) which implies 1𭟋 − (δ ∧ τ) = 1𭟋 or τ < δ. Therefore δ ∧ τ = 0𭟋 or
τ < δ.

(ii) Let δ be a Fe-PC and γ be a FMAe-C set in 𭟋. Then (1𭟋 − δ) is Fe-PO and (1𭟋 − γ) is FMIe-O sets in 𭟋. By Theorem
2.8(i) we have (1𭟋 − δ) ∧ (1𭟋 − γ) = 0𭟋 or 1𭟋 − γ < 1𭟋 − δ which implies 1𭟋 − (δ ∨ γ) = 0𭟋 or δ < γ. Therefore δ ∨ γ = 1𭟋 or
δ < γ.

(iii)Let δ and η be a Fe-PC sets in 𭟋. As δ ∧ η is a Fe-PC set then nothing to prove. Assume δ ∧ η is not a Fe-PC set. By
definition, δ∧η is a FMIe-C or FMAe-C set. If δ∧η is a f.mi. e-closed set, then nothing to prove. Suppose δ∧η is a FMAe-C
set. Now δ < δ∧ η and η < δ∧ η which contradicts the fact that δ and η are Fe-PC sets. Therefore δ∧ η is not a FMAe-C set.
That is δ ∧ η must be a FMIe-C set. □
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III. Fuzzy e-paracontinuousMaps and Some of Their Properties

Definition 3.1 A map ψ from fts 𭟋 to another fts ∆ is called
(i) f.e-pc if ψ−1(α) is a Fe-O set on 𭟋 for every Fe-PO set α on ∆.
(ii)∗-f.e-pc if ψ−1(α) is a Fe-PO set on 𭟋 for every Fe-O set α on ∆.
(iii) f.e-p.i if ψ−1(α) is a Fe-PO set on 𭟋 for every Fe-PO set α on ∆.
(iv) f.mi.e-pc if ψ−1(α) is a Fe-PO set on 𭟋 for every FMIe-O set α on ∆.
(v) f.ma.e-pc if ψ−1(α) is a Fe-PO set on 𭟋 for every FMAe-O set α on ∆.

Theorem 3.2 Every f.e-c map is f.e-pc but not conversely.

Proof. Let ψ : 𭟋→ ∆ be a f.e-c map. We have to prove ψ is f.e-pc. Let α be any Fe-PO set in ∆. Since every Fe-PO set is a
Fe-O set, α is Fe-O set in ∆. Since ψ is a f.e-c, ψ−1(α) is Fe-O set in 𭟋. Hence ψ is a f.e-pc. □

Example 3.3 Let α1,α1
c,α2,α3,α4 and α5 be fuzzy sets on 𭟋 = {a, b, c} with

α1 =
0.3
a +

0.4
b +

0.4
c , α2 =

0.3
a +

0.4
b +

0.5
c , α3 =

0.6
a +

0.5
b +

0.4
c , α4 =

0.6
a +

0.5
b +

0.5
c , α5 =

0.7
a +

0.6
b +

0.4
c and α1

c = 0.7
a +

0.6
b +

0.5
c .

Let τ1 = {0𭟋, α1, α2, α3, α4, 1𭟋} and τ2 = {0𭟋, α1, α1
c, α2, α3, α4, α5, 1𭟋} be fuzzy topologies on 𭟋. Consider the fuzzy identity

mapping ψ : (𭟋, τ1)→ (𭟋, τ2). Then ψ is f.e-pc but not f.e-c mapping because for a Fe-O set α5 on (𭟋, τ2), ψ−1(α5) = α5 which
is not a Fe-O set on (𭟋, τ1).

Theorem 3.4 Every ∗-f.e-pc is f.e-c but not conversely.

Proof. Let ψ : 𭟋→ ∆ be a ∗-f.e-pc map. We have to prove ψ is f.e-c. Let α be a Fe-O set in ∆. Since ψ is ∗-f.e-pc, ψ−1(α) is
Fe-PO set in 𭟋. Since every Fe-PO set is a Fe-O set, ψ−1(α) is Fe-O set in 𭟋. Hence ψ is a f.e-c. □

Example 3.5 Let β1,β2 and β3be fuzzy sets on 𭟋 = ∆ = {a, b, c}. Then β1 =
1.0
a +

0.0
b +

0.0
c , β2 =

1.0
a +

0.6
b +

0.0
c and

β3 =
1.0
a +

0.6
b +

0.5
c are defined as follows: Consider F1 = {0𭟋, β1, β2, β3, 1𭟋}, Let ψ : 𭟋→ ∆ be an identity mapping. Then ψ is

f.e-c but not ∗-f.e-pc mapping since for the Fe-O set β3 on ∆, ψ−1(β3) = β3 which is not a Fe-PO set on 𭟋.
Theorem 3.6 Every ∗-f.e-pc is f.e-pc but not conversely.

Proof. The proof follows from Theorems 3.2 and 3.4. □

Example 3.7 In Example 3.5, “ψ is f.e-pc map but it is not ∗-f.e-pc map.”
Theorem 3.8 Every f.e-p.i map is f.e-pc but not conversely.

Proof. Let ψ : 𭟋 → ∆ be a f.e-p.i map. We have to prove that ψ is f.e-pc. Let α be any Fe-PO set in ∆. Since ψ is f.e-p.i,
ψ−1(α) is Fe-PO set in 𭟋. Since every Fe-PO set is a Fe-O set, ψ−1(α) is Fe-O set in 𭟋. Hence ψ is a f.e-pc map. □

Example 3.9 As described in Example 3.5, consider F3 = {0𭟋, β2, β3, 1𭟋} and F1 = {0∆, β1, β2, β3, 1∆}. Let ψ : 𭟋 → ∆ be an
identity mapping. Then ψ is f.e-pc but not f.e-p.i mapping since for the Fe-PO set β2 on ∆, ψ−1(β2) = β2 which is not a Fe-PO
set on 𭟋.

Theorem 3.10 Every ∗-f.e-pc is f.e-p.i but not conversely.

Proof. Let ψ : 𭟋 → ∆ be a f.e-pc map. We have to prove that ψ is f.e-p.i. Let α be a Fe-PO set in ∆. Since every Fe-PO set
is a Fe-O set, α is a Fe-O set. Since ψ is ∗-f.e-pc, ψ−1(α) is Fe-PO set in 𭟋. Hence ψ is a f.e-p.i map. □

Example 3.11 In Example 3.5,“ ψ is f.e-p.i map but it is not ∗-f.e-pc map.”
Remark 3.12 Fuzzy e-p.irresolute and f.e-c maps are independent of each other.
Example 3.13In Example 3.3, ψ is f.e-p.i map but it is not f.e-c map because for the Fe-O set β5 on ∆, ψ−1(β5) = β5 which

is not a Fe-O set on 𭟋.
Let β1,β2, β3 be fuzzy sets on 𭟋 = {a, b, c} and let α1,α2,α3 be fuzzy sets on ∆ = {x, y, z}. Then β1 =

0.2
a +

0.2
b +

0.2
c ,

β2 =
0.3
a +

0.3
b +

0.3
c , β3 =

0.7
a +

0.7
b +

0.7
c , α1 =

0.2
x +

0.0
y +

0.2
z , α2 =

0.7
x +

0.0
y +

0.7
z , α3 =

0.7
x +

0.7
y +

0.7
z are defined as follows:

Consider F1 = {0𭟋, β1, β2, β3, 1𭟋},F2 = {0∆, α1, α1, α3, 1∆}. Let ψ : 𭟋→ ∆ be a fuzzy mapping defined as f (a) = f (b) = f (c) = y.
Then ψ is f.e-c but not fuzzy e-parairreolute because for the Fe-PO set α2 on ∆, ψ−1(α3) = 0𭟋 which is not a Fe-PO set on 𭟋.

Theorem 3.14 Every f.mi.e-pc map is f.mi. e-continuous but not conversely.

Proof. Let ψ : 𭟋 → ∆ be a f.mi.e-pc map. We have to prove that ψ is f.mi. e-continuous. Let τ1 be any FMIe-O set in ∆.
Since ψ is f.mi.e-pc, ψ−1(τ1) is Fe-PO set in 𭟋. Since every Fe-PO set is a Fe-O set,ψ−1(τ1) is a Fe-O set in 𭟋. Hence ψ is a
fuzzy minimal e-continuous. □

Example 3.15From Example 3.2, ψ is f.mi. e-continous but it is not a f.mi. e-p.continuous, since for the FMIe-O β1 on ∆,
ψ−1(β1) = β1 which is not a Fe-PO set on 𭟋.

Remark 3.16Fuzzy minimal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other.
Example 3.17 Let β1,β2 be fuzzy sets on 𭟋 = {a, b, c} and let α1,α2,α3 be fuzzy sets on ∆ = {x, y, z}. Then β1 =

0.5
a +

0.0
b +

0.0
c ,

β2 =
0.5
a +

0.7
b +

0.0
c , β3 =

0.5
a +

0.7
b +

0.1
c , α1 =

0.5
x +

0.7
y +

0.0
z , α2 =

0.5
x +

0.7
y +

0.9
z , α3 =

0.5
x +

0.8
y +

0.0
z and α4 =

0.5
x +

0.8
y +

0.9
z are
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defined as follows: Consider F1 = {0𭟋, , β1, β2, β3, 1𭟋},F2 = {0∆, α1, α1, α3, α4, 1∆}. Let ψ : 𭟋 → ∆ be an identity maping. Then
ψ is f.mi.e-pc but not f.e-pc(resp. f.e-c) map because for the Fe-PO set α3 on ∆, ψ−1(α3) = α3 which is not a Fe-O set on 𭟋.
In Example 3.2, ψ is f.e-pc but not f.mi.e-pc.

Theorem 3.18 Every f.ma.e-pc is f.ma.e-c but not conversely.

Proof. Let ψ : 𭟋 → ∆ be a f.ma.e-pc map. To prove ψ is f.mi. e-continuous. Let δ be any FMAe-O set in ∆. Since ψ is
f.ma.e-pc, ψ−1(δ) is Fe-PO set in 𭟋. Since every Fe-PO set is a Fe-O set,ψ−1(δ) is a Fe-O set in 𭟋. Hence ψ is a f.ma.e-c. □

Example 3.19 In Example 3.2, “ψ is f.ma.e-c but it is not f.ma.e-pc map.”
Remark 3.20 Fuzzy maximal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other.
Example 3.21 Let β1,β2 be fuzzy sets on 𭟋 = {a, b, c, d} and let α1,α2,α3 be fuzzy sets on ∆ = {x, y, z,w}. Then β1 =

0.0
a +

0.0
b +

0.0
c +

0.9
d , β2 =

0.0
a +

0.0
b +

0.7
c +

0.9
d , β3 =

0.0
a +

0.5
b +

0.7
c +

0.9
d , β4 =

0.2
a +

0.5
b +

0.7
c +

0.9
d , α1 =

0.0
x +

0.0
y +

0.3
z +

0.0
w ,

α2 =
0.0
x +

0.0
y +

0.3
z +

0.9
w , α3 =

0.0
x +

0.5
y +

0.7
z +

0.9
w , are defined as follows: Consider F1 = {0𭟋, β1, β2, β3, β4, 1𭟋},F2 = {0∆, α1, α2, α3, 1∆}.

Let ψ : 𭟋→ ∆ be an identity maping. Then ψ is f.ma.e-pc but not f.e-pc(resp. f.e-c) map because for the Fe-PO set α2 on ∆,
ψ−1(α2) = α2 which is not a Fe-O set on 𭟋. In Example 3.2, ψ is f.e-pc(resp. f.e-c) but not f.ma.e-pc.

Remark 3.22 Fuzzy minimal e-p.continuous and f.ma.e-pc are independent of each other.
Example 3.23 In Example 3.17, “ψ is f.mi.e-pc map but it is not f.ma.e-pc map. From Example III, ψ is f.ma.e-pc map but

it is not f.mi.e-pc map.”
Theorem 3.24 Let 𭟋 and ∆ be ftss. A map ψ : 𭟋 → ∆ is a f.e-pc iff the inverse image of each Fe-PC set in ∆ is a fuzzy

e-closed set in 𭟋.

Proof. Obvious. □

Theorem 3.25 Let A be a nonzero fuzzy subset of 𭟋. If ψ : 𭟋→ ∆ is f.e-pc then the restriction map ψA : A→ ∆ is a f.e-pc.

Proof. Let ψ : 𭟋→ ∆ be a f.e-pc map and A ⊂ 𭟋. To prove ψA is a f.e-pc. Let α be a Fe-PO set in ∆. Since ψ is f.e-pc, ψ−1(α)
is a Fe-O set in 𭟋. By the definition of relative topology f −1

A (α) = A∧ψ−1(α). Therefore A∧ψ−1(α) is a Fe-O set in A. Hence
ψA is a f.e-pc. □

Remark 3.26 The composition of f.e-pc maps need not be f.e-pc.
Example 3.27 Let 𭟋 = ∆ = Φ = {a, b, c, d} and the fuzzy sets β1 =

0.0
a +

0.0
b +

0.2
c +

0.0
d , β2 =

0.0
a +

0.0
b +

0.2
c +

0.5
d ,

β3 =
0.0
a +

0.7
b +

0.2
c +

0.5
d and β4 =

0.3
a +

0.7
b +

0.2
c +

0.5
d are defined as follows: Consider F1 = {0𭟋, β1, β2, 1𭟋}, F2 = {0∆, β1, β2, β3, 1∆}

and F3 = {0Φ, β1, β3, β4, 1Φ}. Let ψ : 𭟋→ ∆ and ξ : ∆→ Φ be identity mappings. Then ψ and ξ are f.e-pc maps ξ ◦ ψ : 𭟋→ Φ
is not f.e-pc, since for the Fe-PO set β3 in Φ, ψ−1(β3) = β3 which is not Fe-O set in 𭟋.

Theorem 3.28 If ψ : 𭟋→ ∆ is f.e-c and ξ : ∆→ Φ is f.e-pc. Then ξ◦ : 𭟋→ Φ is a f.e-pc.

Proof. Let τ1 be any Fe-PO set in Φ. As ξ is f.e-pc, ξ−1(τ1) is a Fe-O set in ∆. Again since ψ is f.e-c, ψ−1(ξ−1(τ1)) = (ξ◦ψ)−1(τ1)
is a Fe-O set in 𭟋. Hence ξ ◦ ψ is a f.e-pc. □

Theorem 3.29 Let 𭟋 and ∆ be ftss. A map ψ : 𭟋→ ∆ is ∗-f.e-pc iff the inverse image of each fuzzy e-closed set in ∆ is a
Fe-PC set in 𭟋.

Proof. Obvious. □

Remark 3.30 Let 𭟋 and ∆ be fts. If ψ : 𭟋→ ∆ is ∗-f.e-pc, then the restriction map ψA : A→ ∆ need not be ∗-f.e-pc.
Example 3.31 Let 𭟋 = ∆ = Φ = {a, b, c} and the fuzzy sets β1 =

0.7
a +

0.0
b +

0.0
c , β2 =

0.7
a +

0.3
b +

0.0
c and β3 =

0.7
a +

0.3
b +

0.5
c

are defined as follows: Consider F = {0𭟋, β1, β2, β3, 1𭟋} and F1 = {0∆, β2, 1∆}. Let δ = 0.0
a +

0.3
b +

0.9
c be a fuzzy set with

Fδ = {0δ, β4, β5, β6, δ} where β4 =
0.0
a +

0.3
b +

0.0
c and β5 =

0.0
a +

0.3
b +

0.5
c . Let ψ : 𭟋→ ∆ be an identity map. Then ψ is ∗-f.e-pc

but fδ : Fδ → ∆ is not a ∗-f.e-pc, since for the Fe-O set β2 in ∆, ψ−1(β2) = β2 which is not a Fe-PO set in Fδ.
Theorem 3.32 If ψ : 𭟋→ ∆ and ξ : ∆→ Φ is ∗-f.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a ∗-f.e-pc.

Proof. Let τ1 be any Fe-PO set in Φ. As every Fe-PO set is a Fe-O set, ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is fuzzy
∗-f.e-pc, ψ−1(ξ−1(τ1)) = (ξ ◦ ψ)−1(τ1) is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is a ∗-f.e-pc. □

Theorem 3.32 If ψ : 𭟋→ ∆ is f.e-pc and ξ : ∆→ Φ is ∗-f.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.e-pc(resp. f.e-c).

Proof. Let τ1 be any Fe-PO(resp. Fe-O ) set in Φ. As every Fe-PO set is a Fe-O set, τ1 is a Fe-O set in Φ. Since ξ is a
∗-f.e-pc, ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is f.e-pc, ψ−1(ξ−1(τ1)) = (ξ ◦ ψ)−1(τ1) is a Fe-O set in 𭟋. Hence ξ ◦ ψ is
f.e-pc(resp. f.e-c) map. □

Theorem 3.34 A map ψ : 𭟋→ ∆ is f.e-p.i iff the inverse image of each fuzzy are e-paraclosed set in ∆ is a Fe-PC set in 𭟋.

Proof. Straightforward. □

Remark 3.35 If ψ : 𭟋→ ∆ is f.e-p.i. Then the restriction map ψA : A→ ∆ need not be f.e-p.i.
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Example 3.36 In Example 3.2, let δ = 0.0
a +

0.0
b +

0.6
c be a fuzzy set with Fδ = {0δ, β4, δ} where β4 =

0.0
a +

0.0
b +

0.5
c . Let

ψ : 𭟋→ ∆ be an identity map. Then ψ is f.e-p.i but fδ : Fδ → ∆ is not a f.e-p.i, since for the Fe-PO set β2 in ∆, ψ−1(β2) = β2
which is not a Fe-PO set in Fδ.

Theorem 3.37 If ψ : 𭟋→ ∆ is f.e-pc and ξ : ∆→ Φ is f.e-p.i, then ξ ◦ ψ : 𭟋→ Φ is a f.e-pc.

Proof. Let τ1 be a Fe-PO set in Φ. As ξ is a f.e-p.i ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is f.e-pc, ψ−1(ξ−1(τ1)) = (ξ◦ψ)−1(τ1)
is a Fe-O set in 𭟋. Hence ξ ◦ ψ is f.e-pc. □

Theorem 3.38 If ψ : 𭟋→ ∆ and ξ : ∆→ Φ are f.e-p.i, then ξ ◦ ψ : 𭟋→ Φ is a f.e-p.i.

Proof. Let τ1 be a Fe-PO set in Φ. Since ξ is a f.e-p.i ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is f.e-p.i, ψ−1(ξ−1(τ1)) =
(ξ ◦ ψ)−1(τ1) is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is f.e-pc. □

Theorem 3.39 If ψ : 𭟋→ ∆ is ∗-f.e-pc and ξ : ∆→ Φ is f.e-p.i. Then ξ ◦ ψ : 𭟋→ Φ is a f.e-p.i.

Proof. Let τ1 be a Fe-PO set in Φ. As ξ is a f.e-p.i, ξ−1(τ1) is a Fe-PO set in ∆. Since every Fe-PO set is a Fe-O set, we have
ξ−1(τ1) is a Fe-O set in ∆. Again since ψ is ∗-f.e-pc, ψ−1(ξ−1(τ1)) = (ξ ◦ψ)−1(τ1) is a Fe-PO set in 𭟋. Hence ξ ◦ψ is f.e-p.i. □

Theorem 3.40 If ψ : 𭟋→ ∆ is f.e-p.i and ξ : ∆→ Φ is ∗-f.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.e-p.i.

Proof. Let τ1 be a Fe-PO set in Φ. As every Fe-PO set is a Fe-O set, τ1 is a Fe-O set in Φ Since ξ is a f.e-pc, ξ−1(τ1) is a
Fe-PO set in ∆. Again Since ψ is f.e-p.i, ψ−1(ξ−1(τ1)) = (ξ ◦ ψ)−1(τ1) is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is f.e-p.i mapping. □

Theorem 3.41 A map ψ : 𭟋→ ∆ is f.mi. f.e-pc iff the inverse image of each FMAe-C set in ∆ is a Fe-PC set in 𭟋.

Proof. Obvious. □

Remark 3.42 The composition of f.mi.e-pc maps need not be a f.mi.e-pc.
Example 3.43 Let 𭟋 = ∆ = Φ = {a, b, c, d} and the fuzzy sets τ1 =

0.0
a +

0.0
b +

0.2
c +

0.4
d , τ2 =

0.0
a +

0.7
b +

0.2
c +

0.4
d ,

τ3 =
0.2
a +

0.7
b +

0.2
c +

0.4
d and τ4 =

0.3
a +

0.7
b +

0.2
c +

0.4
d are defined as follows: Consider F1 = {0𭟋, τ1, τ2, τ3, 1𭟋}, F2 = {0∆, τ2, τ3, τ4, 1∆}

and F3 = {0Φ, τ3, τ4, 1Φ}. Let ψ : 𭟋→ ∆ and ξ : ∆→ Φ be identity mappings. Then ψ and ξ are f.mi.e-pc maps ξ ◦ ψ : 𭟋→ Φ
is not f.mi.e-pc, since for the FMIe-O set τ3 in Φ, ψ−1(τ3) = τ3 which is not Fe-PO set in 𭟋.

Theorem 3.44 If ψ : 𭟋→ ∆ is f.e-p.i and ξ : ∆→ Φ is f.mi.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.mi.e-pc.

Proof. Let η be a FMIe-O set in Φ. As ξ is f.mi.e-pc, ξ−1(η) is a Fe-PO set in ∆. Again since ψ is f.e-p.i, ψ−1(ξ−1(η)) = (ξ◦ψ)−1(η)
is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is f.mi.e-pc map.

□

Theorem 3.45 If ψ : 𭟋→ ∆ is f.e-pc and ξ : ∆→ Φ is f.mi.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.mi.e-pc.

Proof. Let η be a FMIe-O set in Φ. Since ξ is f.mi.e-pc, ξ−1(η) is a Fe-PO set in ∆. Again since ψ is f.e-pc, ψ−1(ξ−1(η)) =
(ξ ◦ ψ)−1(η) is a Fe-O set in 𭟋. Hence ξ ◦ ψ is f.mi.e-pc mapping. □

Theorem 3.46 If ψ : 𭟋→ ∆ is f.e-p.i and ξ : ∆→ Φ is ∗-f.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.mi.e-pc.

Proof. Let η be a FMIe-O set in Φ. As every f.mi. e-open set is a Fe-O set, η is an e-open set in Φ. Since ψ is ∗-f.e-pc, ξ−1(η)
is a Fe-PO set in ∆. Again since ψ is f.e-p.i ψ−1(ξ−1(η)) = (ξ ◦ ψ)−1(η) is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is f.mi.e-pc. □

Theorem 3.47 Let 𭟋 and ∆ be fts. A map ψ : 𭟋→ ∆ is f.ma.e-pc iff the inverse image of each FMIe-C set in ∆ is a Fe-PC
set in 𭟋.

Proof. Sraightforward. □

Remark 3.48 The composition of f.ma.e-pc maps need not be a f.ma.e-pc.
Example 3.49 Let 𭟋 = ∆ = Φ = {a, b, c, d} and the fuzzy sets τ1 =

0.0
a +

0.1
b +

0.0
c +

0.0
d , τ2 =

0.0
a +

0.1
b +

0.7
c +

0.0
d ,

τ3 =
0.0
x +

0.1
y +

0.7
z +

0.2
w and τ4 =

0.3
x +

0.1
y +

0.7+
z +

0.2
w are defined as follows: Consider F1 = {0𭟋, τ2, τ3, τ4, 1𭟋}, F2 = {0∆, τ1, τ2, τ3, 1∆}

and F3 = {0Φ, τ1, τ2, 1Φ}. Let ψ : 𭟋→ ∆ and g : ∆→ Φ be identity mappings. Then ψ and ξ are f.ma.e-pc maps ξ ◦ ψ : 𭟋→ Φ
is not f.ma.e-pc, since for the FMAe-O set τ2 in Φ, ψ−1(τ2) = τ2 which is not Fe-PO set in 𭟋.

Theorem 3.50 If ψ : 𭟋→ ∆ is f.e-p.i and ξ : ∆→ Φ is f.ma.e-pc, hen ξ ◦ ψ : 𭟋→ Φ is a f.ma.e-pc.

Proof. Let γ be a FMAe-O set in Φ. Since ξ is f.ma.e-pc, ξ−1(γ) is a Fe-PO set in ∆. Again since ψ is f.e-p.i, ψ−1(ξ−1(γ)) =
(ξ ◦ ψ)−1(γ) is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is f.ma.e-pc. □

Theorem 3.51If ψ : 𭟋→ ∆ is f.e-pc and ξ : ∆→ Φ is f.ma.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.ma.e-c.

Proof. Let γ be a FMAe-O set in Φ. Since ξ is f.ma.e-pc, ξ−1(γ) is a Fe-PO set in ∆. Again since ψ is f.e-pc, ψ−1(ξ−1(γ)) =
(ξ ◦ ψ)−1(γ) is a Fe-O set in 𭟋. Hence ξ ◦ ψ is f.ma.e-c. □

Theorem 3.52 If ψ : 𭟋→ ∆ is f.e-p.i and ξ : ∆→ Φ is ∗-f.e-pc, then ξ ◦ ψ : 𭟋→ Φ is a f.ma.e-pc.
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Proof. Let γ be a FMAe-O set in Φ. Since every FMAe-O set is a Fe-O set, γ is a Fe-O set in Φ. Since ξ is ∗-f.e-pc, ξ−1(γ)
is a Fe-PO set in ∆. Again since ψ is f.e-p.i, ψ−1(ξ−1(γ)) = (ξ ◦ ψ)−1(γ) is a Fe-PO set in 𭟋. Hence ξ ◦ ψ is f.ma.e-pc. □

IV. Conclusion

The notion of fuzzy e-open sets is remarkable one. By means of this, fuzzy e-paraopen set introduced and studied. Also
various fuzzy mappings and comparisons with appropriate examples investigated.
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