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Abstract — Price stability is the primary monetary policy objective in any economy since it 
protects the interests of both consumers and producers. As a result, forecasting is a common 
practice and a vital aspect of monetary policymaking. Future predictions guide monetary and 
fiscal policy tools that that be used to stabilize commodity prices. As a result, developing an 
accurate and precise forecasting model is critical. The current study fitted and forecasted the 
food and beverages price index (FBPI) in Kenya using seasonal autoregressive integrated moving 
average (SARIMA) models. Unlike other ARIMA models like the autoregressive (AR), Moving 
Average (MA), and non-seasonal ARMA models, the SARIMA model accounts for the seasonal 
component in a given time series data better forecasts. The study relied on secondary data 
obtained from the KNBS website on monthly food and beverage price index in Kenya from 
January 1991 to February 2020. R-statistical software was used to analyze the data. The 
parameter estimation was done using the Maximum Likelihood Estimation method. Competing 
SARIMA models were compared using the Mean Absolute Error (MAE), Mean Absolute Scaled 
Error (MASE),.and Mean Absolute Percentage Error (MAPE). A first-order differenced 
SARIMA (1,1,1) (0,1,1)12 minimized these model evaluation criteria (AIC = 1818.15, BIC 
=1833.40). The forecasting ability evaluation statistics MAE = 2.00%, MAPE = 1.62% and MASE 
= 0.87%. The 24-step ahead forecasts showed that the FPBI is unstable with an overall increasing 
trend. Therefore, the monetary policy committee ought to control inflation through monetary or 
fiscal policy, strengthening food security and trade liberalization. 

 
Keywords — Consumer price index, forecasting, modelling. monetary policy, SARIMA models, 
price stability. 

 

I. INTRODUCTION  

The primary goal of monetary policy making and implementation is price stability. With the fluctuation 
in oil prices due to the supply forces brought in by the OPEC and non-OPEC nations, other commodity 
prices are likely to fluctuate [1]. Reference [2] found that food and oil price shocks contribute to Kenya's 
persistent inflationary pressures. The World Bank's commodity markets outlook in 2019 showed an 
increasing trend of commodity prices like oil and agricultural produce and are likely to peak on average by 
2020. Food and beverage price fluctuation in Kenya has been attributed to seasonal fluctuations in food 
production. Frequent and unpredictable changes in prices is a cause of concern since it affects investment 
and consumer behavior.  

While high prices may benefit the producers, owing to supernormal profits, it can indicate high volatility 
of prices and hence uncertainty on future prices. Such fluctuations in the market discourage both local and 
foreign investments in the commodity market. To the consumers, high market prices adversely affect their 
standards of living. Consequently, increased price volatility may exacerbate the country's balance of 
payments problems and depress economic growth. On the contrary, low export prices may cause the balance 
of payments to deteriorate. Moreover, deflation may impact the economy because it lessens firms' 
profitability, which is a disincentive investment. As a result, levels of prices must be stabilized in a way 
that encourages growth in the economy. Overall, uncertainty about future prices may dampen investment 
and repress a country's economy's growth [3], [4].  

 As a key feature of commodity markets, price volatility necessitates forecasting future trends in order to 
make an informed investment strategies and government policies aimed at price regulation [5]. Monitoring 
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commodity price indices aids in the development of evidence-based consumption and investment reforms. 
Besides, consumers and investors who use some commodities as inputs in their production processes need 
to understand the nature and trend of commodity prices to make informed decisions concerning the future. 
In Kenya, the monetary policy committee controls inflation and implements price stability policies. The 
Central Bank of Kenya (CBK) keeps market prices stable to avoid inflation [6]. To mitigate the unexpected 
surge and adverse impact of inflation, the central banks employ the inflation forecast targeting (IFT) or in–
house Forecasting and Policy Analysis Systems (FPAS), which are forward-looking regimes where 
inflation forecast is the intermediate target [7]. The CBK has an inflation aim range of 2.5 percent and 7.5 
percent [8]. The FPAS framework utilizes the simple quarterly projection model that incorporates 
uncertainty and moral suasion. Deviation from the target helps formulate restorative policy decisions to 
bring the inflation forecasts on track [9]. 

Time series modeling approaches have grown in popularity in modeling time series due to increased 
demand for forecasts in economic time series data. Since seasonal or periodic fluctuations in commodity 
prices are a common feature in the commodity market, Economists and Statistics face the challenge of 
getting the best predictive models to be used in forecasting. Additionally, the non-linearity in commodity 
prices, such as food and beverages, necessitates non-linear models in its prediction. The Seasonal 
Autoregressive Integrated Moving Average  

(SARIMA) model, unlike other ARIMA models like the autoregressive models (AR), Moving Average 
(MA), and ARMA models, accounts for seasonal variation in a given time series data. The SARIMA has 
been useful in many fields finding its applicability in modeling and forecasting series exhibiting seasonality 
such revenues forecasting [10], unemployment forecasting [11], inflation in Ghana [12], tomato prices in 
Turkey [13], rainfall in Kenya [14], annual sugarcane yields data in India [15], exchange rate forecasting 
[16], and inflation forecasting [17], the unemployment rate in Greece [18], and tomato wholesale prices 
[19]. The current study fitted the SARIMA model monthly food and beverage prices in Kenya from 1991 
to 2020. 

 

II. LITERATURE REVIEW 

The SARIMA models have been widely used to model inflation data in several economies. The study of 
[20] empirically modeled and forecasted monthly inflation data in Ghana applying monthly based data from 
January 1990 to January 2012. The ARIMA (3, 1, 3) (2, 1, 1)12 model order was the best fit in modeling 
the inflation data. The model minimized the prediction errors were based on MAPE of 1.902, RMSE of 
0.080, and MAE of 0.054. Reference [21] discovered that the SARIMA (0, 1, 1) (0,1,1)4 model was the 
best fit for tomato prices in Ghana's Ashanti region (BIC = 5.969). They observed significant price 
fluctuations in tomato prices throughout the year. Prices can often increase tenfold during peak harvest 
seasons, implying that if farmers plan their tomato areas, planting dates and sales dates by evaluating 
predicted rates from the fitted ARIMA models, they will obtain inflated prices, profitability could rise at 
least by three to fourfold with 90 percent certainty of the prediction accurateness. 

Reference [22] conducted a study in which they used SARIMA Models to forecast rates of inflation in 
Nigeria form the year 2003 (November) to 2013 October with 120 observations. They discovered that the 
SARIMA (1,1,1) (0,0,1)12 model was the most accurate at forecasting Nigeria's inflation rate (AIC = 
5.4813, BIC = 5.5742). Reference [17] used quarterly data from 1981 to 2013 to forecast the Kenyan 
inflation rate using SARIMA. By minimizing the Akaike Information Criterion value, the researchers 
discovered that SARIMA (0,1,0) (0,0,1)4 was the most considered model for predicting inflation rates in 
Kenya. The predictive ability tests of the model were based on minimization of predictions errors using 
several metrics, including the MAPE = 3.945, RMSE = 0.2871, and MAE = 0.2369, which depicted that 
the used model was the most suitable for predicting the rates of inflation in Kenya. Using Kenya's inflation 
rate from 1981 and 2013, Gikungu et al [23], identified SARIMA (0,1,0) (0,0,1)4 as the appropriate model 
to fit the data. The predictability tests, MAPE = 3.945, RMSE = 0.2871, and MAE = 0.2369, demonstrated 
that the resultant model was suitable for predicting inflation rates in Kenya.  

The study of [24] contracted the suitability of the SARIMA and holt-winters (HW) approach in fitting 
short-term inflation in Ghana applying data on monthly inflation for January 1971 to 2012 October. The 
study findings of the SARIMA forecast from ARIMA (2,1,1) (0,0,1)12 presented the prediction metrics as 
follows mean absolute error (0.1787), root mean square error (0.2104), mean absolute percentage error 
(1.9123) and mean absolute scaled error (0.0073) and the Seasonal Multiplicative HW forecast was MAE 
(2.2305), RMSE (2.4274), MAPE (24.000), MASE (0.0911). Thus, the study proposed the SARIMA model 
as the best fit for the short-term prediction method for inflation in Ghana. The performance of Holt-Winters 
Triple Exponential Smoothing and SARIMA models were also compared by [25] using monthly Kenya's 
inflation data between November 2011 and October 2016. The study findings indicated that the SARIMA 
model (MASE = 0.059, MAE = 0.004, MAPE = 0.073) is the best candidate model for the inflation data 
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than HW Triple Exponential Smoothing model (MASE = 0.643, MAE 0.595, MAPE =0.400). In Ghana, 
[26] examined the monthly inflation data from January 2010 to September 2017 with 104 data points. 
ARIMA (1,1,1) was the most suitable model that minimized the prediction errors (RMSE =1.163), 
outperforming competing orders.  

Overall, the reviewed studies have applied Box and Jenkins techniques of time series modeling using 
SARIMA. Most found that it is the most suitable model for modeling time series data characterized by 
seasonality and non-stationarity. However, the context of the reviewed studies presents gaps to be the field 
in the current study. First, the study was conducted in a different economy, unlike the current study, which 
focuses on Kenya's economy. Besides, most of the reviewed considered the general price level, unlike the 
current study, which focuses explicitly on Kenya's food and beverages price index. 

 

III. DATA AND METHODS 

A. Data 
The study does not involve any probabilistic sampling procedures since it is a time series analysis. The 

data used was monthly food and beverage prices index data in Kenya for the period January 1991 to 
February 2020 extracted from Kenya's KNBS (knbs.or.ke). The selected time frame has 350 data points 
and is thus sufficient for time series modeling. The chosen period is also considered appropriate 
economically since the period includes the economic shocks such as the post-election violence in Kenya of 
1997, 2002, and 2007 and the 2007/08 global recession. Such shocks are responsible for the seasonal shocks 
to the consumer price index that SARIMA models capture. 

B. Seasonal Autoregressive Integrated Moving Average Models 
SARIMA models are an adjustment of Autoregressive Integrated Moving Average (ARIMA) models 

that accurately model seasonal time series data. Seasonality is defined in time series as a systematic pattern 
of repeated fluctuations over a given time, given h is the periodicity of the series [27]. For example, data 
observed quarterly has h being 4. This behaviour, which is frequent in most time series data, renders the 
Autoregressive Integrated Moving Average model ineffective when applied to the series. Seasonal AR and 
MA terms in an ARIMA forecast 𝑋!	based on previous observations and residual errors with lags multiples 
of S. (the seasonality duration of the series). The ARIMA models (non-seasonal) are widely referred to as 
ARIMA (p, d, q), given p is the order for AR model denoting the set of time lag(s), d gives the differencing 
order, and q the MA order of the model [28]. The seasonal ARIMA model, on the other hand, combines 
non-seasonal and seasonal components represented as ARIMA (p,d,q) (P, D, Q)h [29]. 

Let 𝐵" represent the operator then we have, 
 

 𝐵"𝑋! = (𝑋! − 𝑋!#$) (1) 
 

The seasonal differencing is denoted as, 
 

 (1 − 𝐵")𝑋! = (𝑋! − 𝑋!#$) (2) 
 
which can be obtained using Equation (3considering data observed monthly, we have s=12 
 

 (1 − 𝐵%&)𝑋! = (𝑋! − 𝑋!#%&) (3) 
 

(1 − 𝐵%&)𝑋! = (𝑋! − 𝑋!#%&) 
 

SARIMA model, which is characterized by both seasonal order (P,D,Q) and non-seasonal order (p,d,q), 
is simplified as SARIMA (p,d,q)(P,D,Q)S model and can be composed as  
 

 𝜑(𝐵)𝛷(1 − 𝐵")'𝑋! = 𝜃(𝐵)𝛩(𝐵")𝑍! (4) 
 

In that Φ and Θ imply polynomials in 𝐵"of order P, Q respectively. The SARIMA (0,1,1)(0,1,1) 12 is one 
of the commonly used model that is especially for seasonal data. Reference [30] confirm that [31] SARIMA 
model is presented by (5). 
 

 𝜑((𝐵")𝛷(𝐵)∇"'∇)𝑥! = 𝛼 + 𝛩*(𝐵")𝜃(𝐵)𝑍! (5) 
 
where 𝑍!	denotes the gaussian white noise sequence. The ARIMA (p d q) (P, D, Q)12 is the general model. 
The autoregressive (AR) and moving average (MA) parts are depicted by polynomials (𝛷) and 𝜃 of orders 
p and q respectively while seasonal autoregressive (SAR) and seasonal moving average (SMA) parts are 
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denoted by	𝜑((𝐵") and 𝛩*(𝐵") of orders P and Q, respectively and the differencing components for both 
ordinary and seasonal are denoted by; 

 
 ∇)= (1 − 𝐵)' 

∇"'= (1 − 𝐵")' 
(6) 

 
Given the data of interest is monthly data, s = 12, generally, the multiplicative SARIMA model becomes; 

 
 (1 − 𝐵)(1 − 𝐵%&)𝑋! = (1 + 𝜃𝐵)𝛩(𝐵%&)𝑍! (7) 

 
Under this approach, CPI data with monthly observations per year was employed. The first order SAR(1) 

model used	𝑋!#%& in predicting 𝑋!, whereas the SMA (1) used 𝑍!#%&	as it predictor. 

C. Data Analysis 
R-Statistical Software [32] was used to analyze the data. The preliminary steps involved determining the 

data's stationarity. SARIMA models are suitable for stationary time series with steady mean and variance 
over time. Data exploration was done by examining the visual plot to check for any underlying patterns of 
behavior. The scatter points have a constant mean and variance for stationary time-series data and oscillate 
around the mean. However, for a non-stationary time series, the time plot indicates an upward or downward 
trend which implies non-constant mean and variance. The data's stationarity was assessed applying the 
popular Augmented Dickey-Fuller (ADF) method developed by [33]. The ADF technique tries to preserve 
the reliability of the test on the bases of white noise in the regression model by guaranteeing that the noise 
is indeed white. Assume the ADF statistic is larger than the critical value at a 5% level of significance. In 
that case, the null hypothesis is that a unit root is recognized and non-stationary is confirmed in the series. 
For a non-stationary series, differences at various degrees were performed to obtain a stationary series. 
According to [34], the modeling approach comprises of four stages: model identification, estimation of the 
model, diagnostic checking, and model forecasting, discussed as follows; 

1) Model Identification or Selection  
The model selection criteria entail finding the most suitable model to fit the data by finding a model that 

neither underestimates nor overestimates the data. Reference [35] state that the principle of parsimony is 
applied where a model with few parameters is preferred. The first step of modeling is detecting the 
appropriate SARIMA (p, d, q) (P, D, Q) order of the model. The order specification and selection of orders 
p and q entail plotting the sample correlogram at various lag lengths, and the order d is approximated using 
the I (1) or I (0) process [36]. Considering the non-seasonal behavior, the sample autocorrelation function 
(ACF) and partial autocorrelation function (PACF) typically have spikes at lag k and cut off after lag k. 
ACF and PACF have spikes at lag ks and cut off after lag ks at the seasonal level. The number of significant 
spikes indicates the model's order [37] Tables I and II show how the ACF and PACF behave for both 
seasonal series and non-seasonal series [30]. The differencing d and D order is determined by differencing 
order performed in making the series stationary. 
 

TABLE I: ACF AND PACF BEHAVIOUR FOR NON-SEASONAL ARIMA (P, Q) 
 AR(p) MA(q) ARMA(p,q) 

ACF Tail off at lag k Cuts off at lag q Tails off 
PACF Cuts off at lag p Tails off at lag k Tails off 

 
TABLE II: ACF AND PACF BEHAVIOUR FOR THE SEASONAL ARIMA (P, Q) 

 AR(P) MA(Q) ARMA (𝑃, 𝑄)! 
ACF Tail off at lag Ks Cuts off at lag Qs Tails off 

PACF Cuts off at lag Ps Tails off at lag Ks Tails off 
 

The current study used Akaike Information Criterion [38] and the Bayesian Information Criterion to 
select a parsimonious model. A model which minimizes these information criteria was chosen. Whereas 
AIC attempts to measure the model to the certainty of the state, BIC seeks the best [39]. The AIC is 
computed using equation (8) [38]. 

 

 𝐴𝐼𝐶 = 5
𝐸𝑆𝑆
𝑁 9 𝑒

&+
,  (8) 

 
where; 𝑛 denotes the number of observed values, 𝑓 represents parameters under consideration, and, 𝐸𝑆𝑆 is 
the Error sum of squares.  

The BIC is obtained using equation (10) [40] 
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 𝐵𝐼𝐶 = −2 log(𝐿) + 𝑘log	(𝑛) (9) 
 
The k denotes parameters in the model, (p+q+P+Q+1), L denotes the maximum likelihood function value 

for the proposed model and n gives the size of sample. 
2) Model Estimation 
The lagged observations of the error terms are unobservable. Thus, the maximum likelihood estimation 

(MLE) method is preferred in estimating parameters of the model instead of the Ordinary Least Squares 
(OLS) regression method since it is not possible to derive explicit expressions to estimated unknown 
coefficients as opposed to AR models where we utilize lagged values of a given series. For a T observations 
sample, the log-likelihood (LL) function of {y_t (θ)} following the premise of independent and distributed 
standardized 9, is denoted by: 

 

 𝐿𝑛	𝐿	[𝑦!(𝜃)] =FG𝑙𝑛[𝐷(𝑍!(𝜃), 𝑣)] −
1
2
[𝑙𝑛(𝜎&!(𝜃)]M

-

!.%

 (10) 

 
Where; 𝜃 is a vector of the conditional variance, conditional mean, and density function 9 parameters 

that must be estimated, and is a sequence of random variables with a mean of zero and variance one. 
The estimated parameters of θ can be estimated using a multivariate normal distribution with its mean 

given and covariance matrix usually denoted by: 
 

 𝑉, =
1
𝑛
(𝑉𝑎𝑟[𝑉/𝑙𝑛(𝑓0(𝑋; 𝜃1))])#% (11) 

 
where: 
𝑙𝑛(𝑓0(𝑋; 𝜃1) – log-likelihood estimated at the parameter 𝜃1;  
𝑉/𝑙𝑛(𝑓0(𝑋; 𝜃1) – vector of the first derivatives. 

3) Model Diagnostics 
In an ideal situation, a model would extract all methodical information from the data. Model diagnostic 

checks are typically based on the model's residuals (e_t) and regulate the suitability of the chosen model. 
Among the premise of the ARIMA class of models is that the model's residuals ought to be white noise. If 
e_t are independently and identically distributed with zero mean and a variance 〖 σ〗_t, the series is a 
gaussian white noise [41]. For whiteness, the ACF is all zero. In practice, the autocorrelation function of 
the noise is close to zero if the model's residuals are indeed white noise. To test for homoscedasticity and 
normality, the residual's visual plot and Q-Q plots were used. The Ljung Box Q statistic was employed to 
establish if the residuals errors are independent. The Box-Pierce Q statistics is computed using equation 
(14) [41]. 

 

 𝑄2 = 𝑛(𝑛 + 2)F
𝑒3&

𝑛 − 2

2

3.%

 (12) 

 
where 𝑒3 denotes the autocorrelation of residuals at lag 𝑘, 
𝑛 represent the number of residuals,  
𝑚 denotes the time lags. 

The model is considered adequate if the probability value associated with the Ljung-Box Q statistic is 
greater than the critical level of significance. The correlogram of residuals be used to test the 
autocorrelation. For non-correlated series, the ACF and PACF should be close to zero for all lags, and the 
Q-Statistics would be trivial with larger p-values [18]. 

4) Model Accuracy Evaluation 
To determine model performance in terms of in-sample forecast, the precision of competing models can 

be checked. Some observations are omitted during model construction in out-of-sample forecasting. The 
current study employs three model evaluation metrics: MAE, RMSE, and MAPE, to test accuracy of the 
model. The model presenting the lowest number of these metrics is thought to be a better fit for use in 
forecasting. If the forecast is perfect all the aforementioned metrics equal to zero. The lower the value, the 
more accurate forecasts are and vice versa. The model forecasting ability depends entirely on minimization 
of the accuracy metrics. The RMSE calculates the difference or residuals between the model's forecasts and 
observed values (14). 
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 𝑅𝑀𝑆𝐸 = V𝐸𝑆𝑆
𝑛  (13) 

 
The "mean prediction error" is measured by RMSE. The RMSE will be zero for a "Perfect" fit.  
Where; 𝐸𝑆𝑆 is the error sum of squares: 
 

 𝐸𝑆𝑆 =F(𝑦W! − 𝑦!)&
,

!.%

 (14) 

 
which implies that 

 𝑅𝑀𝑆𝐸 = V∑ (𝑦W! − 𝑦!)&,
!.%

𝑛 = V∑ 𝑒!&,
!.%

𝑛  (15) 

 
The MAE is obtained using (17). 
 

 𝑀𝐴𝐸 =
∑ Y𝑌! − Ŷ!Y,
!.%

𝑛  (16) 

 
where, 𝑌! :actual observed value at time t; 
Ŷ!: forecasted observations;  
𝑛 : observations. 

5) Forecasting Using SARIMA 
Forecasting is the final stage in the Box and Jenkins’ model building approach. Forecasting inflation is 

a common practice and a vital input when making monetary policy decisions [43]. It is very important in 
the planning and decision making. It aids in anticipating future uncertainty on the bases of previous and 
current observations' behavior. After passing the diagnostic test, the model is ready for forecasting. For 
example, given the SARIMA (0, 1, 1) (1, 0, 1)12, the next step ahead forecasts are as follows: 

 
 𝑍! − 𝑍!#% = 𝛷(𝑍!#%& − 𝑍#%4) + 𝜀! − 𝜃𝜀!#% −𝛷𝜀!#%& + 𝜃𝜀!#%4 (17) 

 
  𝑍! = 𝑍!#% +𝛷(𝑍!#%& − 𝑍#%4) + 𝜀! − 𝜃𝜀!#% −𝛷𝜀!#%& + 𝜃𝜀!#%4 (18) 

 
The 1-step ahead forecast of the origin t is as follows: 

 
 𝑍]!5% = 𝑍! +𝛷(𝑍!#%%−𝑍#%&) − 𝜃𝜀! −𝛷𝜀!#%% + 𝜃𝜀!#%& (19) 

 
The noise term 𝜀%4, 𝜀%&, 𝜀%%, … , 𝜀%	(as residuals) enters into the predictions for leading times 𝑙 =

1,2, … ,13 nonetheless, for 𝑙 > 13, the model's Autoregressive component takes over: 
 

 𝑍]!5% = 𝑍!#65% +𝛷𝑍!56#%& −𝛷𝑍!56#%4	𝑓𝑜𝑟	𝑙 > 13 (20) 
 

IV. RESULTS AND DISCUSSION 

A. Descriptive Statistics 
Table III shows that the least FBPI recorded was 75.83 in 2001M12, and the highest was 265.79 in 

2020M2. The series has a higher variability since the standard deviation statistic is large (51.07). This 
suggests non-stationarity of the data. The intuition relies on the fact that for stationary time series the mean 
and standard deviation, do not change over time. The skewness statistic of 1.20, which is positive, implies 
that the FBPI series has a slightly long-right tail. However, the value is within the recommended range of 
+-3; hence the data is assumed to be approximately normally distributed since the skewness statistic is 
almost zero. In such a case, the series can be modeled without carrying out a log transformation on the data. 

 
TABLE III: DESCRIPTIVE STATISTICS 

Statistic Min Mean Variance SD Max Skewness Kurtosis 
FBPI 75.83 130.32 2607.95 51.07 265.79 1.20 0.26 
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B. Visualization of the Series 
The visual plot of the food and beverage price index data (see Fig. 1) Indicates the original data set has 

an upward trend with two notable peaks. The first one occurred in the 1990s, where the 1996 and 1997 had 
an annual average index of 113.7 and 111.3, respectively. The rise can be linked with the following 
structural changes in the economy before the peak. In 1993, the dual system where both official rates of 
exchange and the "market" rate was abolished. The liberalization allowed a flexible rate exchange 
determined at the market rate. The immense private capital influxes led to the accumulation of foreign 
exchange balances in the commercial banks. As a result, the excess money supply in circulation amidst the 
inadequate supply of essential commodities pushed prices up [44]. Treasury bill discount rate to mitigate 
excess liquidity, which in turn pushed the inflation rate up. The prices started to subside following the 
depreciation of Kenya's currency in 1998. 

 

 
Fig. 1. Time series plot of food and beverage price index. 

Note. CPI index before February 2020 is calculated from CPI with base February 1982=100 and after that calculated with base 
February 2009=100. 

 
The second period with a sharp rise in food prices as well as oil prices between 2007/8 and 2011 (focusing 

on the slope since the given visual plot has two base years: 1982 and 2009) can be attributed to the striking 
external shocks. The shock came shortly after a relatively stable food price during 2007 due to the bumper 
harvest [45]. The first food crisis of 2008/9 (majorly surging food cereals prices such as rice and wheat) 
can be associated with the high oil and energy prices, low-interest rates, devaluation of the dollar, poor 
performance in the agricultural sector due to adverse weather conditions (droughts), and restrictions of rice 
export by major rice-producing countries as a form of protectionism of the domestic prices following the 
shortage in supply which in turn lead panic buying of imported grains [9]. The inflated oil prices pushed 
costs of cereal production up since the agricultural sector is primarily energy-intensive. The shortage in 
supply was compounded by the rising demand for cereals from wealthy OPEC who benefited from surging 
oil prices. All these factors skyrocketed food prices across the globe. Overall, there has been an upward in 
food prices in Kenya, which rose steadily from 2009 to 2020. The trend is not favorable, especially to 
consumers, since it dilutes their real income. 

C. Decompositon of the Series 
A seasonal time series is made up of three components: a trend component, a seasonal component and 

an irregular component. Decomposing a time series entails breaking it down into these three main 
components. Seasonal decomposition was used to evaluate if the series exhibits the three main components. 
The visual plot in Fig. 2 showed the initial series (observed) with its linked three components (seasonal, 
random error and trend). Meanwhile, the series features a seasonal component, thus necessitates the use of 
a model that captures seasonality, in this case, the SARIMA model. 
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Fig. 2. Decomposition of the Price Index Series. 

 

D. Testing for Non-stationarity 
Fig. 1 depicts the monthly series of FBPI data evolution. The series does not appear stationary (has a 

changing mean and variance over time) with notable seasonal fluctuation attributed to external shocks (oil 
prices and exchange rate movements; weather conditions) and internal shocks (political instability and 
monetary policy). The study used ADF unit roots tests to perform a statistical test for series stationarity 
[33]. Table IV shows the Augmented Dickey-Fuller (ADF) test results on the food and beverage price index 
series. The findings suggest that the series level is non-stationary (ADF = -0.871, p = 0.955). However, the 
series was stationary in the first difference (ADF = -7.894, p = 0.01) at lag 12 (ADF = -6.307, p = -0.01), 
and at differencing (1) of the seasonally differenced series (ADF = -6.307, p = -0.01). As a result, seasonal 
ARIMA (P, D, Q) model takes the value D = 0 while the non-seasonal ARIMA (p, d, q) model takes the 
value d = 1. 

TABLE IV: UNIT ROOT TEST 

 Level First Difference Seasonal Difference 
at lag 12(SDL12) 

First Difference 
of the SDL12 

ADF -0.871 -7.894 -6.422 -6.307 
P-value 0.955 0.01** 0.01** 0.01** 

 

E. Model Building 
Involves the process of examining the most appropriate SARIMA model as presented in this section. 

1) Model Indentification 
After identifying the series' stationarity, the order of both the seasonal and non-seasonal components of 

AR and MA processes that are suitable for the model is evaluated by inspecting the behavior of PACF and 
ACF. Fig. 3 depicts correlogram plots with seasonal lags ranging from 0 to 50. The non-seasonal terms are 
determined by examining the initial lags. Non-seasonal MA terms are indicated by spikes in the ACF at 
short lags. Spikes in the PACF, on the other hand, indicate the possibility of non-seasonal AR terms at short 
lags. At lag 2, the early lags in the PACF tails are observed. As a result, we can calculate the non-seasonal 
MA (2) process. The PACF exhibits a notable spike at lag one, which then levels off until lags 12, 24 The 
spikes, however, fade with time. The pattern is followed by a tapering sequence in the ACF plot's lags. As 
a result, a non-seasonal AR (1) can fit a portion of the model. The patterns across lags that are multiples of 
S are inspected to determine the order of the seasonal component. The behaviors of the spikes about lags 
12, 24, 36, and so on are examined for monthly data. The ACF plot depicts a cluster of (negative) spikes 
near lags 12, 24, and 48. Positive spike clusters, on the other hand, are observed at lag 36. The PACF taper 
in S=12 multiples; the PACF has notable lags at 12, 24 and 36 similar to the seasonal moving average (1) 
process. We can deduce an ARIMA(1,1,0)(0,1,1)12 based on the ACF and PACF of the 12th differences 
(Fig. 4). 
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Fig. 3. The seasonally differenced series at lag 12 and its associated ACF and PACF. 

 
Fig. 4. AFC and PACF Plots of the First Difference of the Seasonally Differenced series at lag 12. 

 
The parsimonious rule permits the researcher to choose the simplest model that sufficiently explains the 

series' behavior [29]. The study employed a grid search approach, where a combination of competing orders 
was examined to find a model that curtails one of the information criteria. Here, a range of parameter 
combinations is examined. To avoid fitting over the parametrized model, AIC and BIC help select the best 
model, in which the best model has the least value of these evaluation criteria [37]. Table V compares 17 
estimated models based on AIC and BIC. 
 

TABLE V: COMPARISON OF SARIMA MODELS USING AIC AND BIC 
SARIMA MODEL(Order) S AIC BIC 

(0,1,2) (1,0,0) 12 1860.968 1876.388 
(0,1,2) (0,0,1) 12 1860.969 1876.389 
(0,1,2) (0,1,1) 12 1820.349 1835.629 
(0,1,3) (1,0,1) 12 1858.767 1881.897 
(1,1,0) (1,0,0) 12 1858.565 1870.130 
(1,0,0) (0,1,1) 12 1818.174 1829.635 
(1,1,0) (0,1,1) 12 1818.174 1829.635 
(1,1,1) (0,0,1) 12 1859.084 1874.504 
(1,1,1) (0,1,1) 12 1818.153 1833.433 
(1,1,2) (1,0,0) 12 1860.906 1880.181 
(2,1,0) (1,0,0) 12 1859.302 1874.722 
(2,1,1) (1,0,0) 12 1859.700 1879.000 
(2,1,1) (0,0,1) 12 1859.721 1878.996 
(3,1,0) (1,0,0) 12 1861.185 1880.461 
(3,1,1) (1,0,0) 12 1861.709 1884.840 
(3,1,1) (0,0,1) 12 1862.871 1886.001 
(0,1,3) (1,0,0) 12 1862.965 1882.240 
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The findings in Table four show that the SARIMA (1,1,1) (0,1,1)12 model is most suitable candidate 
based on Akaike (AIC) and Bayesian (BIC) criteria. The non-seasonal specifications of AR (1), differencing 
(1), and MA (1) are given first, then follows the seasonal specifications of SAR (0), seasonal differencing 
(1), SMA (1) and the span of seasonality (h=12). 

2) Model Estimation 
The estimation of the model's coefficients employs the maximum likelihood estimation method, 

following the [31] time series modeling. The output in Table VI displays the estimated coefficients of the 
SARIMA (1,1,1) (0,1,1)12 model. 
 

TABLE VI: TABLE OF COEFFICIENTS 
 Estimate SE t-value p-value 

AR1 0.5755 0.1642 3.5053 0.0005 
MA1 -0.3045 0.1955 -1.5577 0.1202 

SMA1 -0.921 0.0431 -21.3749 0.0000 
σ" = 11.78: log likelihood = -905.08, AIC = 1818.15, BIC =1833.4 

 
The non-seasonal AR1 and SMA1 components were statistically significant at a 1% level (all p-values 

< 0.01). The coefficient of the AR component is average (0.576), given that the coefficient ranges from 0 
to 1. The finding implies that the FBPI series returns to its mean relatively moderately. The non-significance 
of the non-seasonal MA component points out that past periodic shocks to FBPI in Kenya do not 
significantly explain the present price index levels. The results are congruent to those of Nyoni [46], who 
found that the non-seasonal AR explains the current CPI in Kenya, whereas the MA did not. However, their 
study used the ARIMA model, which does not capture seasonality. By extension, the current study 
demonstrates seasonality component incorporates the MA component only. Since it is close to 1, the 
seasonal shocks are infrequent. As shown by the visual shocks in the FBPI series, the two peaks occurred 
during the 1998/9 and 2008/09 financial crises. 

 
From the Table VI, the SARIMA (1,1,1) (0,1,1)12 model can be expressed as: 
 

                                              𝑋! = 0.5755 − 0.3045𝑒!#% − 0.921𝜖!#%	    (23) 
 

where;	𝑋! is the CPI series,	𝑋!#%	is the non-seasonal AR process of order 1, 𝑒!#% is the non-seasonal MA 
process of orders 1, and 𝜖!#% is the SMA process of order 1. 

3) Diagnostics Checks of the Model 
The estimated best fit model must be examined to ascertain if it sufficiently represents the FBPI data in 

Kenya. As a result, diagnostic checks were run on the residuals to see if they meet the normality assumption 
and autocorrelation. The models' standardized residuals ought to resemble an independently and identically 
distributed sequence with mean zero and constant variance. The residual plot demonstrates that the 
standardized residual plots have a constant variance. The residuals are almost normally distributed, 
according to the normal Q-Q plots, because they lie along the 45 line (Fig. 5). 

 
Fig. 5. Standardized Residuals Plots of ARIMA (1, 1,1) (0, 1, 1)12 model. 

 
The ACF plot shows There is no serial correlation amongst each lagged values because the residuals 

have no notable autocorrelation (Fig. 6). The residual ACF plots do not show enough existence of 



   EJ-MATH, European Journal of Mathematics and Statistics 
ISSN: 2736-5484 

DOI: http://dx.doi.org/10.24018/ejmath.2021.2.6.80   Vol 2 | Issue 6 | December 2021 60 
 

significant spikes, implying that the residuals are white noise. Because the associated Q-statistics have large 
p-values (greater than 0.05), the Ljung–Box Q-test revealed that the residuals are purely white noise. As a 
result, no serial autocorrelation and partial autocorrelation coefficients between residuals at different lag 
times are statistically insignificant up to lag 7. The findings imply that residuals errors are not correlated 
and thus do not require ARCH class of models. 

 

 
Fig. 6. The Ljung–Box Q-test and ACF of residuals. 

 
4) Model Accuracy Test 
The accuracy-test summarized in Table VII was applied in determination of the model's accuracy in 

making an h-step ahead prediction. The model can be considered as a better fit since it is much more 
accurate in terms of MAPE of the forecast of 1.62% compared to those of [47], who fitted SARIMA (1, 1, 
1) (0, 1, 2)12 to monthly rainfall data for Embu County with MAPE of 9.0% in its 2-year period predictive 
ability. 
 

TABLE VII: MODEL ACCURACY TEST 
Parameter Value 

RMSE 3.3678 
MAE 2.0013 

MAPE 1.6238 
Note: The accuracy metrics values result from the in-sample prediction errors from the fitted model. 
 

Compared to past studies that employed SARIMA to fit the general inflation show a slight but 
comparable disparity. For instance, the fitted model performed better than those of [17], who fitted 
SARIMA (0,1,0) (0,0,1)12 to inflation rates in Kenya applying quarterly data for the year 1981 to 2013 in 
terms of MAPE (3.945) only. In Uganda, Kinene [48] SARIMA (1,1,0) (1,0,1)12 minimized the prediction 
errors better than the current study's fitted model (RMSE = 1.2191). In another Kenyan study, the SARIMA 
(0,1,0) (0,0,1)4 model of [23], which best-fitted inflation rate quarterly data from 1981 to 2013, has 
predictive ability metrics as follows: RMSE (0.2871), MAPE (3.9456), and MAE (0.2369). The disparity 
can also be explained by the different time frames and frequency of data. For instance, [17] used quarterly 
data, and [48] used a one-step-ahead forecast, unlike the current study, which used two-step ahead period 
forecasts. Nonetheless, the fitted and the initial data sets, as shown in Fig. 7, are in synchrony, indicating 
that the model is suitable for the data. 

 

 
Fig. 7. Initial and Fitted FBPI data. 
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F. Forecasting 
The practice of forecasting inflation has typically been regarded as a vital input in monetary 

policymaking [43]. It aids in planning and decision-making by providing awareness into the future based 
on the past and existing behavior of given observed values. As a result, the final model was applied to fit 
h-step ahead predictions. The Forecasts for the next 24 months, March 2020 to March 2022, with the 95 
percent confidence interval (one) and two standard error prediction bounds overlaid in grey (Fig. 8). 

 

 
Fig. 8. Actual Time Series Plot of FBPI and the h=24 Step Period Forecasts. 

Note: The forecasted values are red with the 95 percent and 99 percent Prediction bounds. 
 
The forecasts show a decreasing trend from 276.46 in May 2020 to about 273.1289 in October 2020 

(273.13) (Table IX). After that, the model prediction shows another upward trend from 273.93 in November 
2020 to 286.66 in May 2021. The subsequent downfall from June 2021 (285.740) ended in October 2021 
(282.75), followed by an upward trend to the end of the forecast period in February 2021 (288.18). Overall, 
the food price index appears to have increased trend over time. The findings support past studies, such as 
the study done by [17], [23], [46], [49], whose forecasts indicated that inflation is more likely to rise in the 
future in Kenya. 

 
TABLE VIII: FORECASTS (24-STEP AHEAD) 

Month 2020 (Estimates) SE 2021 (Estimates) SE 2022 (Estimates) SE 
Jan   276.88 17.25 286.47 27.02 
Feb   278.58 18.14 288.17 27.7 

March 270.17 3.43 281.6 19.07   
Apr 274.64 5.55 285.28 19.99   
May 276.46 7.41 286.66 20.87   
June 275.8 9.06 285.74 21.73   
July 274.98 10.54 284.77 22.56   
Aug 274.42 11.88 284.13 23.36   
Sept 274.3 13.11 283.95 24.14   
Oct 273.13 14.25 282.75 24.89   
Nov 273.41 15.31 283.02 25.62   
Dec 274.93 16.31 284.53 26.33   

 

V. CONCLUSION 
Forecasting is common practice and a vital aspect of monetary policymaking. An evidence-based and 

valid policy option should bank on reliable forecasts that can be realized if the most suitable model with 
higher predictive accuracy is used. Following the Box-Jenkins model building approach, this study has 
demonstrated that SARIMA (1,1,1) (0,1,1)12 (AIC = 1818.15, BIC =1833.4, MAE = 2.00% MAPE = 
1.62%, MASE = 0.869%). All the prediction metrics lies below the acceptable range of 5 percent thus the 
model was best fit for food and beverage and price index in Kenya. Besides, the 24-step ahead forecasts 
depicted that food and beverage prices seem to be volatile. However, SARIMA models are unstable for 
long time period forecasts and can only be used in making short-term forecasts. The model is relevant to 
the Monetary Policy Committee who carries out the periodic evaluation of price indices to direct their 
policy actions, such as price controls. 
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