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1. Introduction

For exactly solvable models in non-linear systems, the group structure plays an important role. The
KdV equation is one of the examples. The AKNS formalism exposes that the KdV equation has the
sl(2, R) ∼= so(2, 1)/Z2

∼= sp(2, R) ∼= su(1, 1) Lie algebra structure [1]. From geometrical approaches,
we can also observe that the KdV equation has such Lie algebra structure [2]–[5]. In addition, we can
find the Lie group structure for the Jacobi type elliptic function [6]. It is worth mentioning that the
℘-function is one of the static solutions of the KdV equation. While, in some sense, the Taniyama-
Shimura conjecture [7]–[9] is considered to be the exactly solvable system because we can obtain all
solutions for each elliptic curve over specific Fp from the Mordell-Weil group structure [10], [11] of
that elliptic curve. Parametrizing elliptic curves by the ℘-function, the Lie group structure of the ℘-
function and the Mordell-Weil group in the Taniyama-Shimura conjecture are strongly connected.
The Mordell-Weil group can be considered to be the special Abelian subgroup of the non-Abelian SL
(2, R) Lie group. In the Taniyama-Shimura conjecture, the Mordell-Weil group plays an essential role.

In this paper, we consider an analogue of the Taniyama-Shimura conjecture for quadratic curves
over Fp. By constructing the analogue of the modular form of the Taniyama-Shimura conjecture for
quadratic curves, we will demonstrate that such an analogue of the modular form can be considered
as a generalization of the Gaussian sum and it has a structure of the modular transformation by using
the other Gaussian sum.

2. Generalized Gaussian Sum

Here we consider the quadratic curve analogue of the modular form of the Taniyama-Shimura
conjecture.

2.1. The Quadratic Curve Analogue of the Modular Form of the Taniyama-Shimura Conjecture

We denote the number of solutions for the elliptic curve

y2 ≡ x3 + k2x2 + k1x + k0 (mod p),

Vol 5 | Issue 6 | November 2024 7

https://crossmark.crossref.org/dialog/?doi=10.24018/ejmath.2024.5.6.378&domain=pdf
http://dx.doi.org/10.24018/ejmath.2024.5.6.378
mailto:shigemot@tezukayama-u.ac.jp


A Quadratic Curve Analogue of the Taniyama-Shimura Conjecture Hayashi et al.

over Fp by N̂(p) and define b̂(p) = p − N̂(p). Suppose a modular form, which corresponds to this
elliptic curve, to be

f (τ ) =
∞∑

n=1

ĉ(n)qn, q = exp (2π iτ).

Then the Taniyama-Shimura conjecture claims b̂(p) = ĉ(p) for prime numbers p. In our quadratic
case, i.e.,

y2 ≡ ax2 + 1 (mod p),

over Fp, the number of solutions is given by N(p) = p −
(

a
p

)
and we define b(p) = p − N(p) =

(
a
p

)
.

Then the quadratic curve analogue of the modular form is given by

f (τ ) =
∞∑

n=1

c(n)qn, q = exp (2π iτ).

with c(p) = b(p) =
(

a
p

)
for prime numbers p.

Based on the above discussions, the quadratic curve analogue of the modular form should at least

include
(

a
p

)
qp terms. For such a form to have some modular transformation property, it must include

terms b(n)qn with a non-prime integer n. Candidate that satisfies these requirements can be obtained
by replacing the prime number p with any integer n. At the same time, we have to replace the Legendre

symbol with the Kronecker symbol in the form
(

a
p

)
qp →

(a
n

)
K

qn, because the Legendre symbol is

not defined for non-prime integer n. Note that for odd prime number p,
(

a
p

)
K

=
(

a
p

)
.

Let us discuss the periodicities of the Kronecker symbol. For a ≡ 1 (mod 4), we obtain(
a
p

)
K

=
(

p
a

)
K

(−1)
a−1

2 · p−1
2 =

(
p + a�

a

)
K

(−1)
a−1

2 · p+a�−1
2 =

(
a

p + a�

)
K

,

for any integer �. That is,
(

a
p

)
K

is periodic with respect to p (mod a).

For a ≡ 3 (mod 4), we obtain(
a
p

)
K

=
(

p
a

)
K

(−1)
a−1

2 · p−1
2 =

(
p + 4a�

a

)
K

(−1)
a−1

2 · p+4a�−1
2 =

(
a

p + 4a�

)
K

.

That is,
(

a
p

)
K

is periodic with respect to p (mod 4a).

For a ≡ 2 (mod 4), we put a = 2a′ with a′ is odd integer. Then we have(
a
p

)
K

=
(

2
p

)
K

(
a′

p

)
K

= (−1)
p2−1

8

(
p
a′

)
K

(−1)
a′−1

2 · p−1
2

= (−1)
(p+8a′�)2−1

8

(
p + 8a′�

a′

)
K

(−1)
a′−1

2 · p+8a′�−1
2 =

(
a

p + 4a�

)
K

.

That is,
(

a
p

)
K

is periodic with respect to p (mod 4a).

Then we arrive at the quadratic curve analogue of the modular form

f (τ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=1

(
a
n

)
K

qn, q = exp(2π iτ), if a ≡ 1 (mod 4),

∞∑
n=1

(n, 4a)=1

(
a
n

)
K

qn
1, q1 = exp(2π iτ/4), if a ≡ 2, 3 (mod 4).

(1)

In order to concrete our claim, we will show the following in subsequent subsections:
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1) f (τ ) becomes the Gaussian sum if τ is the special value τ0,
2) f (τ ) is associated with the theta function, so it has the structure of the modular transformation.

Then we call the above infinite sum (1) the generalized Gaussian sum. If τ is the special value τ0, the
generalized Gaussian sum becomes periodic, and we denote one of its periods, which is proportional
to the Gaussian sum, as f̄ (τ0).

We close this subsection by giving some examples of f̄ (τ0), which will be helpful to understand the
proof in the following subsections.

Example 1.

1) For y2 ≡ 5x2 + 1 (mod p), f̄ (1/5) = q − q2 − q3 + q4 = √
5 = G5.

2) For y2 ≡ −3x2 + 1 (mod p), f̄ (1/3) = q − q2 = √−3 = G3.
3) For y2 ≡ 3x2 + 1 (mod p), f̄ (1/3) = q1 − q5

1 = √
3 = −iG3.

4) For y2 ≡ −5x2 + 1 (mod p), f̄ (1/5) = q1 + q3
1 + q7

1 + q9
1 = √−5 = iG5

2.2. Gaussian Sum

In this subsection, we show that the Gaussian sum can be extracted from the quadratic curve
analogue of the modular form given in (1).

Here we list the properties of the Kronecker symbol used in the following calculations. Let m =
2e1 m′, n = 2e2 n′ (m′, n′ = odd integer):

•
if m > 0 or n > 0 and (m, n) = 1 (e1 = 0 or e2 = 0 and (m′, n′) = 1),(

n
m

)
K

(
m
n

)
K

= (−1)
m′−1

2 · n′−1
2 . (2)

•
(

n
2

)
K

=
(

2
n

)
K

=
⎧⎨
⎩

1, if n ≡ 1, 7 (mod 8),
−1, if n ≡ 3, 5 (mod 8),

0, if 2|n.
(3)

• (−1
n

)
K

= (−1)
n′−1

2 . (4)

•
if n �= −1,(

ab
n

)
K

=
(

a
n

)
K

(
b
n

)
K

,
(

n
ab

)
K

=
(

n
a

)
K

(
n
b

)
K

. (5)

• (
m
n

)
K

= ±1, if (m, n) = 1, otherwise
(

m
n

)
K

= 0. (6)

•

for n > 0 and a ≡ b mod
{

4n, if n ≡ 2 (mod 4),
n, otherwise,

,
(

a
n

)
K

=
(

b
n

)
K

. (7)

1) y2 ≡ ax2 + 1(mod p), a > 0 and a ≡ 1 (mod 4): In the case of (n, a) = 1,
(a

n

)
K

=
(n

a

)
K

is derived

from (2). Since
(a

n

)
K

= 0 if (n, a) �= 1, (1) can be rewritten as

f (τ ) =
∞∑

n=1

(n
a

)
K

qn, q = exp(2π iτ). (8)

Equation (7) shows that
(

n + a
a

)
K

=
(n

a

)
K

holds. If τ = 1/a, then qa = 1, and we obtain

(
n + a

a

)
K

qn+a =
(

n
a

)
K

qn.
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From this equation, it can be seen that f (1/a) repeatedly contains f̄ (1/a) shown in the following

f̄ (1/a) =
a−1∑
n=1

(n
a

)
K

exp(2π in/a). (9)

Since
(a

a

)
K

= 0, the sum of n in (9) is up to a − 1.

If we put a = p (prime number) further, f̄ (1/p) becomes the Gaussian sum in the form

f̄ (1/p) =
p−1∑
n=1

(
n
p

)
exp(2π in/p) = Gp = √

p, p ≡ 1 (mod 4). (10)

2) y2 ≡ ax2 + 1 (mod p), a < 0 and a ≡ 1 (mod 4): Let us consider for a ≡ 1 (mod 4) and a < 0. In

this case we rewrite
(a

n

)
K

as

(
a
n

)
K
=

( − |a|
n

)
K
=

( − 1
n

)
K

( |a|
n

)
K
= (−1)

n′−1
2 × (−1)

|a|−1
2 · n′−1

2

(
n
|a|

)
K

by using (2), (4) and (5). Note that (−1)
|a|−1

2 = −1 because of |a| ≡ 3 (mod 4). Then we obtain

(−1)
n′−1

2 × (−1)
|a|−1

2 · n′−1
2 = (−1)

n′−1
2 × (−1)

n′−1
2 = 1.

Then (1) can be rewritten as

f (τ ) =
∞∑

n=1

(
n
|a|

)
K

qn, q = exp(2π iτ). (11)

If τ = 1/|a|, then q|a| = 1, and we obtain(
n + |a|

|a|
)

K
qn+|a| =

(
n
|a|

)
K

qn.

The generalized Gaussian sum f (1/|a|) repeatedly contains f̄ (1/|a|) shown in the following

f̄ (1/|a|) =
|a|−1∑
n=1

(
n
|a|

)
K

exp(2π in/|a|). (12)

If we put |a| = p (prime number) further, f̄ (1/p) becomes the Gaussian sum in the form

f̄ (1/p) =
p−1∑
n=1

(
n
p

)
exp(2π in/p) = Gp = i

√
p, p ≡ 3 (mod 4). (13)

3) y2 ≡ ax2 + 1(mod p), a > 0 and a ≡ 3 (mod 4): We prove the following theorem.
Theorem 1. Let a ≡ 3 (mod 4) and a > 0.(

a
n + 2a

)
K

= −
(a

n

)
K

.

Proof . Because a = 4k + 3 and n is odd integer from (n, 4a) = 1, we obtain(
a
n

)
K

= (−1)
a−1

2 · n−1
2

(
n
a

)
K

= (−1)
n−1

2

(
n
a

)
K

,

from (2). While we have(
a

n + 2a

)
K

= (−1)
a−1

2 · n+2a−1
2

(
n + 2a

a

)
K

= (−1)
n−1

2 +a
(

n
a

)
K

,

where we used (7). Then we obtain
(

a
n + 2a

)
K

/(a
n

)
K

= (−1)a = −1. �
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TABLE I: Relation among n, m and � for a = 11

m 1 2 3 4 5 6 7 8 9 10

� 0 0 1 1 1 1 1 1 2 2
n 15 19 1 5 9 13 17 21 3 7

If τ = 1/a, then q2a
1 = −1, we obtain(

a
n + 2a

)
K

qn+2a
1 =

(
a
n

)
K

qn
1.

The generalized Gaussian sum f (1/a) repeatedly contains f̄ (1/a) shown in the following

f̄ (1/a) =
2a−1∑

n=1, (n, 4a)=1

(
a
n

)
K

qn
1 =

2a−1∑
n=1, (n, 4a)=1

(−1)
n−1

2

(
n
a

)
K

qn
1. (14)

In (14), n takes (a − 1) values as n ∈ {
1, 3, · · · , ǎ, · · · , 2a − 1

}
, where ǎ indicates that a is not

included. These values can be mapped to the following values m as m ∈ {1, 2, 3, · · · , a − 1}. The
relation between n and m is given with suitable integer � as follows

n = 4m − a(2� − 1). (15)

We show here an example for a = 11 in the Table I. Proof for any a will be given in Appendix A.
Replace n in (14) with m to get the following equation

f̄ (1/a) =
2a−1∑

n=1, (n, 4a)=1

(
n
a

)
K

(−1)
n−1

2 qn
1 =

a−1∑
m=1

(
4m − a(2� − 1)

a

)
K

(−1)
4m−a(2�−1)−1

2 q4m−a(2�−1)

1 . (16)

By using (3), (5) and (7), we obtain(
4m − a(2� − 1)

a

)
K

=
(

4m
a

)
K

=
(

2
a

)
K

(
2
a

)
K

(
m
a

)
K

=
(

m
a

)
K

.

Furthermore, we obtain

(−1)
4m−a(2�−1)−1

2 = (−1)2m−a�+ a−1
2 = (

(−1)−a)�
(−1)

a−1
2 = (−1)�+1,

q4m−a(2�−1)

1 = exp(2π im/a) exp
(
(−2� + 1)π i/2

) = i(−1)� exp(2π im/a),

where we used q1 = exp(π i/2a).
If we put a = p (prime number) further, f̄ (1/p) becomes the Gaussian sum in the form

f̄ (1/p) = −i
p−1∑
m=1

(
m
p

)
exp(2π im/p) = −iGp = √

p, p ≡ 3 (mod 4). (17)

4) y2 ≡ ax2 + 1(mod p), a < 0 and a ≡ 3 (mod 4): We rewrite f (τ ) as

f (τ ) =
∞∑

n=1, (n, 4a)=1

(−|a|
n

)
K

qn
1, q1 = exp(2π iτ/4). (18)

Theorem 2. Let a ≡ 3 (mod 4) and a < 0.( −|a|
n + 2|a|

)
K

= −
(−|a|

n

)
K

.

Proof . |a| = 1 (mod 4) and n is odd because of (n, 4|a|) = 1. Then (−1)
|a|−1

2 = 1 and
n − 1

2
is integer.

We, therefore, obtain(−|a|
n

)
K

=
(−1

n

)
K

( |a|
n

)
K

= (−1)
n−1

2 × (−1)
|a|−1

2 · n−1
2

(
n
|a|

)
K

= (−1)
n−1

2

(
n
|a|

)
K

.
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While we obtain( −|a|
n + 2|a|

)
K

=
( −1

n + 2|a|
)

K

( |a|
n + 2|a|

)
K

= (−1)
n+2|a|−1

2 × (−1)
|a|−1

2 · n+2|a|−1
2

(
n + 2|a|

|a|
)

K

= (−1)
n+1

2

(
n
|a|

)
K

.

Note that
n + 2|a| − 1

2
= n + 1

2
+ |a| − 1. Then we obtain

( −|a|
n + 2|a|

)
K

/(−|a|
n

)
K

= −1. �

If τ = 1/|a|, then q2|a|
1 = −1, and we obtain( −|a|

n + 2|a|
)

K
qn+2|a|

1 =
( − |a|

n

)
K

qn
1.

The generalized Gaussian sum f (1/|a|) repeatedly contains f̄ (1/|a|) shown in the following

f̄ (1/|a|) =
2|a|−1∑

n=1, (n, 4|a|)=1

(−|a|
n

)
K

qn
1 =

2|a|−1∑
n=1, (n, 4|a|)=1

(−1)
n−1

2

(
n
|a|

)
K

qn
1. (19)

n ∈
{

1, 3, · · · , ˇ|a|, · · · , 2|a| − 1
}

and m ∈ {1, 2, 3, · · · , |a| − 1} are connected each other with

suitable integer � as follows

n = 4m − |a|(2� − 1).

This will be proved in Appendix.
By the same calculation as shown below (16), we have

f̄ (1/|a|) =
2|a|−1∑

n=1
(n, 4|a|)=1

(−1)
n−1

2

(
n
|a|

)
K

qn
1

=
|a|−1∑
m=1

(−1)
4m−|a|(2�−1)−1

2

(
4m − |a|(2� − 1)

|a|
)

K
q4m−|a|(2�−1)

1

=
|a|−1∑
m=1

(−1)�
(

m
|a|

)
K

exp(2π im/|a|) × i(−1)�

= i
|a|−1∑
m=1

(
m
|a|

)
K

exp(2π im/|a|), (20)

where we used q1 = exp(π i/2|a|).
If we put |a| = p (prime number) further, f̄ (1/p) becomes the Gaussian sum in the form

f̄ (1/p) = i
p−1∑
m=1

(
m
p

)
exp(2π im/p) = iGp = i

√
p, p ≡ 1 (mod 4). (21)

5) y2 ≡ ax2 + 1 (mod p), a ≡ 2 (mod 4): We put a = 2(2k + 1) = 2a′, where a′ is odd. Here n is odd
integer owing to (n, 4a) = 1.

Theorem 3. Let a ≡ 2 (mod 4) and a > 0.(
a

n + 2a

)
K

= −
(

a
n

)
K

.

Proof . (3) can be rewritten for odd n as
(n

2

)
K

=
(

2
n

)
K

= (−1)
n2−1

8 .
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Then we obtain(
a

n + 2a

)
K

=
(

2a′

n + 4a′

)
K

=
(

2
n + 4a′

)
K

(
a′

n + 4a′

)
K

= (−1)
(n+4a′)2−1

8

×(−1)
a′−1

2 · (n+4a′)−1
2

(
n + 4a′

a′

)
K

= (−1)
n2−1

8 (−1)na′ × (−1)
a′−1

2 · n−1
2

(
n
a′

)
K

= −(−1)
n2−1

8

×(−1)
a′−1

2 · n−1
2

(
n
a′

)
K

.

While we obtain(
a
n

)
K

=
(

2a′

n

)
K

=
(

2
n

)
K

(
a′

n

)
K

= (−1)
n2−1

8 × (−1)
a′−1

2 · n−1
2

(
n
a′

)
K

.

Thus we obtain
(

a
n + 2a

)
K

/(a
n

)
K

= −1. �

If τ = 1/a, then q2a
1 = −1, and we obtain(

a
n + 2a

)
K

qn+2a =
(

a
n

)
K

qn.

The generalized Gaussian sum f (1/a) repeatedly contains f̄ (1/a) shown in the following

f̄ (1/a) =
2a−1∑

n=1, (n, 4a)=1

(
a
n

)
K

exp(2π in/4a). (22)

In the case of a < 0, the similar calculation shows that

f̄ (1/|a|) =
2|a|−1∑

n=1, (n, 4|a|)=1

(−|a|
n

)
K

exp(2π in/4|a|). (23)

By using the other expression of Gaussian sum, (22) and (23) are expected to be rewritten as follows

f̄ (1/a) = 1
1 + i

2a−1∑
n=0

exp(2π in2/4a) = √
a, if a > 0 and a ≡ 2 (mod 4),

f̄ (1/|a|) = i
1 + i

2|a|−1∑
n=0

exp(2π in2/4|a|) = i
√|a|, if a < 0 and a ≡ 2 (mod 4).

For a = ±2, ±6, ±10, we have verified that our expectation is correct. Below, we show a = 6 case.
With q1 = exp(π i/12), we obtain

11∑
n=1, (n, 24)=1

(
6
n

)
K

qn
1 = q1 + q5

1 − q7
1 − q11

1 = √
6,

and

11∑
n=0

qn2

1 = 1 + q1 + q4
1 + q9

1 − q4
1 + q1 − 1 + q1 − q4

1 + q9
1 + q4

1 + q1 = 4q1 + 2q9
1 = (1 + i)

√
6.

2.3. Modular Transformation Structure

Here we explain the generalized Gaussian sum is associated with a theta function.
Theorem 4. There are two expressions of the Gaussian sum in the form

Gp =
p−1∑
n=1

(
n
p

)
exp(2π in/p) =

p−1∑
m=0

exp(2π im2/p) =
√

(−1)
p−1

2 p. (24)

Proof of the second expression. We consider the quantity

I =
p−1∑

a=1, a=quadratic
residue

exp(2π ia/p), (25)
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in a ∈ F×
p .

{
12, 22, · · · , n2, · · · , (p − n)2, · · · , (p − 1)2

}
are quadratic residues, and the same quadratic

residue comes twice as n2 ≡ (p − n)2 (mod p). Then we have I = 1
2

∑p−1
m=1 exp(2π im2/p). While we

obtain

Gp =
p−1∑
m=1

(
m
p

)
exp(2π im/p) =

p−1∑
a=1, a=quadratic

residue

exp(2π ia/p) −
p−1∑

a=1, a=quadratic
non-residue

exp(2π ia/p)

= I − J. (26)

By the way, we obtain I +J = ∑p−1
m=1 exp(2π im/p) = −1, which gives J = −I − 1. Then we conclude

Gp = 2I + 1 =
p−1∑
m=1

exp(2π im2/p) + 1 =
p−1∑
m=0

exp(2π im2/p). � (27)

Thus we obtain the generalized Gaussian sum with the other expression in the form

G(τ ) =
∞∑

n=1

(
n
p

)
exp(2π inτ) =

∞∑
m=0

exp(2π im2τ). (28)

Using this generalized Gaussian sum with the other expression, we can connect the generalized
Gaussian sum with the elliptic theta function in the form

G(τ ) = 1 +
∞∑

n=1

exp(2π in2τ) = 1
2

(
ϑ

[
1
1

]
(0, τ) + 1

)
. (29)

The elliptic theta function has the structure of the modular transformation, and by shifting the
constant value, the generalized Gaussian sum also has the structure of the modular transformation.

Through the considerations above, we conclude the generalized Gaussian sum is the quadratic curve
analogue of the modular form in the Taniyama-Shimura conjecture.

3. Conclusion

We have examined the quadratic curve analogue of the Taniyama-Shimura conjecture for the
quadratic curves. The number of solutions in Fp is governed by the order of the quadratic curve
analogue of the Mordell-Weil group. For quadratic curves y2 ≡ ax2 + 1 (mod p), the order of the

group of the Mordell-Weil analogue is given by N(p) = p −
(

a
p

)
. If we make the combination of

b(p) = p − N(p) =
(

a
p

)
, we obtain

−b(p) = N(p) − p =
p−1∑
n=1

(
ax2 + 1

p

)
. (30)

For the quadratic curve analogue of the modular form of the Taniyama-Shimura conjecture, by
replacing the Legendre symbol with the Kronecker symbol, we obtain the generalized Gaussian sum.
If we use the other form of the Gaussian sum, the generalized Gaussian sum is connected with the
elliptic theta function with zero argument. Thus, the generalized Gaussian sum has the structure of the
modular transformation.

Appendix

Correspondence between n ∈ {
1, 3, · · · , ǎ, · · · , 2a − 1

}
and m ∈ {1, 2, 3, · · · , a − 1} for odd a.

In this appendix, we show that n ∈ {
1, 3, · · · , ǎ, · · · , 2a − 1

}
and m ∈ {1, 2, 3, · · · , a − 1} are

mapped to each other by using the following relation with a suitable integer � for odd a:

n = 4m − a(2� − 1), � = 0, 1, 2, · · · . (31)

Theorem 5. If m1 �= m2, then n1 �= n2.
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Proof . Let n1 = 4m1 − a(2�1 − 1) and n2 = 4m2 − a(2�2 − 1). Then

n1 − n2 = 2 (2(m1 − m2) − a(�1 − �2)) .

Suppose n1 = n2, then 2(m1 − m2) = a(�1 − �2). Since a is odd, �1 − �2 must be even. If m1 �= m2,
|a(�1 −�2)| ≥ 2a, while |2(m1 −m2)| ≤ 2(a−1) because m1 and m2 are elements of {1, 2, 3, · · · , a − 1}.
Then, 2(m1 − m2) − a(�1 − �2) cannot be reduced to 0 for m1 �= m2, which contradicts the assumption
n1 = n2. Namely, we conclude that n1 �= n2 if m1 �= m2.�

Theorem 6. If odd integer n ∈ {
1, 3, 5, · · · ǎ, · · · , 2a − 1

}
is given, then m ∈ {1, 2, 3, · · · , a − 1} and

� are determined from (31).
Proof . To solve (31), we first consider the equation

1 = 4X + aY .

Thanks to (4, a) = 1, this equation always has an integer solution X = X0 and Y = Y0, where Y0

must be odd because a is odd. By multiplying n, we obtain the solution of (31) as m = m0 = nX0 and
−2(� − 1) = −2(�0 − 1) = nY0, namely

n = 4m0 − a(2�0 − 1).

It can be seen that (31) has an infinite number of solutions. Indeed, for any integer k

m = m0 + ka, � = �0 + 2ka, (32)

are solution of (31). By making k an appropriate integer, m can be an element of {1, 2, 3, · · · , a − 1}
except when m is 0. If m = 0, however, n = a with � = 0. it is the excluded value for n. The exclusion of

n = a follows from the fact that the definition of f̄ (τ ) given in (14) and (19) includes
(a

n

)
K

, which is 0

for n = a. �
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