Edge Domination of the Nilpotent Cayley Graph of the Residue Class Ring \((\mathbb{Z}_n, \oplus, \odot)\)

Levaku Madhavi\(^1\), Tippaluri Nagalakshumma\(^2\), and Jangiti Devendra\(^3\)

ABSTRACT

In their earlier study, the authors have obtained the properties of the nilpotent Cayley graph \(G(\mathbb{Z}_n, N)\) associated with the set of nilpotent elements \(N\) of the residue class ring \((\mathbb{Z}_n, \oplus, \odot)\) modulo an integer \(n \geq 1\) and its vertex domination parameters. In this paper, the edge cover and its associated parameters of this graph are found.

Keywords: Edge domination, Nilpotent Cayley graph, Vertex domination.

1. Introduction

During the mid-nineteenth century, the graph theoretic problem of finding a subset \(V_0\) of the vertex set \(V\) of a graph \(G\) with minimum cardinality, which covers every edge of \(G\), is similar to the problem of finding the minimum number of queens that can be placed on a chess board, so that all the squares are attacked by a queen or occupied by a queen. In the same way, one can think of finding a subset of edges of a graph \(G\) with minimum cardinality, which covers all vertices of \(G\) and these studies constitute an important branch of graph theory, namely, domination theory of graphs.

Berge \([1]\) and Ore \([2]\) gave a formal definition of vertex as well as edge dominating set, which are currently used in literature. Allan et al. \([3]\), \([4]\), Cockayne and Hedetniemi \([5]–[7]\), Haynes et al. \([8]\) and many others have contributed a lot to the domination theory of graphs.

Later Madhavi et al. \([9]–[11]\) studied domination parameters of graphs associated with some arithmetic functions.

The nilpotent graphs associated with a finite commutative ring \(R\) and the \(n \times n\) matrix ring \(M_n(R)\) are studied by Chen \([12]\), Nikmehr and Khojasteh \([13]\) and Basnet et al. \([14]\).

In \([15], [16]\) the authors have studied a new class of arithmetic Cayley graphs, namely, the nilpotent Cayley graphs associated with the set of nilpotent elements in the residue class ring \((\mathbb{Z}_n, \oplus, \odot), n \geq 1,\) an integer and its vertex domination.

Let \(N\) denote the set of nilpotent elements in the ring \((\mathbb{Z}_n, \oplus, \odot)\). The nilpotent Cayley graph of the ring \((\mathbb{Z}_n, \oplus, \odot)\) associated with the group \((\mathbb{Z}_n, \oplus)\) and its symmetric subset \(N\) is the graph \(G(\mathbb{Z}_n, N)\), whose vertex set \(V = \mathbb{Z}_n\) and the edge set:

\[E = \left\{(\bar{a}, \bar{b})/\bar{a}, \bar{b} \in \mathbb{Z}_n\text{ and either } \bar{a} - \bar{b} \in N, \text{ or, } \bar{b} - \bar{a} \in N\right\}.

In \([15]\), it is proved that, if \(n = \prod_{i=1}^{r} p_i^{\alpha_i}\), where \(p_i\)'s are primes such that \(p_1 < p_2 < \ldots < p_r\), \(\alpha_i \geq 1\) and \(1 \leq i \leq r\), are integers and \(m = p_1 p_2 p_3 \ldots p_r\), then the graph:
Since 0 is a non-trivial nilpotent element, for $0 \in \mathbb{Z}_n$, 0.3 is again a contradiction, since 0 is a non-trivial nilpotent element.

The terminology and notations that are used in this paper can be found in [17] for graph theory [18], for algebra and [19] for number theory.

2. **Edge Cover of the Nilpotent Cayley Graph** $G(Z_n, N)$

A subset E of the edges of a graph G, in which every vertex of G is incident with some edge in E, is called an edge cover of the graph G. An edge cover of G, which contains the least number of edges is called a minimum edge cover of G. The number of edges in a minimum edge cover of G is called the edge covering number of G and it is denoted by $\beta'(G)$.

Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \ldots < p_r$ are primes, $\alpha_i \geq 1$, $1 \leq i \leq r$ are integers. If $\alpha_r = 1$, for all i, then $m = p_1p_2 \ldots p_r$ and the ring $(\mathbb{Z}_n, \oplus, \odot)$ has no nilpotent elements, so that $N = \emptyset$. Hence the edge set E of $G(Z_n, N)$ is also empty and one cannot think about the edge cover and the edge covering number of the graph $G(Z_n, N)$. So, throughout this paper, it is assumed that $\alpha_i > 1$, for atleast one $i, 1 \leq i \leq r$. Let $E_k = \left\{(\bar{m} + k, \bar{i} + m + \bar{k})/0 \leq i < j \leq (n - m)/m\right\}$.

In the following Theorems, we establish that $\bigcup_{k=0}^{m-n} E_k$ forms a minimum edge cover of the nilpotent Cayley graph $G(Z_n, N)$.

Theorem 2.1:
Each $E_k, 0 \leq k \leq m - 1$ contains distinct edges of the graph $G(Z_n, N)$.

Proof:
First let us show that each $E_k, 0 \leq k \leq m - 1$, contains distinct pairs of vertices of the graph $G(Z_n, N)$. Suppose that $(\bar{m} + k, \bar{i} + m + \bar{k}) = (\bar{m} + k, \bar{j} + m + \bar{k})$.

for some $\bar{m} + k, \bar{i} + m + \bar{k}, (\bar{m} + k, \bar{j} + m + \bar{k}) \in E_k, 0 \leq i < j \leq (n - m)/m$. Then, either

$$\bar{m} + k = \bar{m} + k$$

or,

$$\bar{m} + k = (\bar{i} + m + \bar{k})$$

From (1) we get, $\bar{m} + k = \bar{m} + k$, or, $\bar{i} = 0$. Since $0 \leq i < j \leq (n - m)/m < n$, we have $0 < j - i < n$. But $\bar{i} = 0$, for $0 < s < n$ and this leads to a contradiction.

On the other hand (2) gives:

$$\bar{m} + k = (\bar{i} + m + \bar{k}) = (\bar{i} + m + \bar{k} + m)$$

which on simplification gives $\bar{m} = 0$. This is again a contradiction, since $0 < 2m < n$. Thus each E_k contains distinct order pairs of vertices of the graph $G(Z_n, N)$.

To see that each ordered pair in $E_k, 0 \leq k \leq m - 1$, represents an edge in the graph $G(Z_n, N)$, let: $(\bar{m} + k, \bar{i} + m + \bar{k}) \in E_k$, for $0 \leq i \leq n - m$.

Then:

$$\bar{m} + k = (\bar{i} + m + \bar{k}) = (\bar{i} + m + \bar{k}) - i(m + \bar{k}) - \bar{m} \in N,$$
so that \((jm + k, (j + 1)m + k)\) is an edge of the graph \(G(Z_n, N)\). Thus each \(E_k\) contains distinct edges of \(G(Z_n, N)\).

Lemma 2.2:
For \(0 \leq k < l \leq m - 1\), \(E_k \cap E_l = \emptyset\).

Proof:
If possible, assume that \(E_k \cap E_l \neq \emptyset\), for \(0 \leq k < l \leq m - 1\). Then, there exists an edge \((u, v) \in E_k \cap E_l\), or, \((u, v) \in E_k\) and \((u, v) \in E_l\). Then:
\[(u, v) = (im + k, (i + 1)m + k)\] and \((u, v) = (jm + l, (j + 1)m + l)\),
for some \(i, 0 \leq i, j \leq (n - m)/m\). For definiteness, we may assume that \(i < j\). This gives, either
\[im + k = jm + l\] and \((i + 1)m + k = (j + 1)m + l\),
(3)
or,
\[im + k = (j + 1)m + l\] and \((i + 1)m + k = jm + l\).
(4)
From (3), we get:
\[\frac{(j - i)m}{(i - 1)m} = \frac{l - k}{(l - k)}\]
(5)
But \((j - i)m\) is a nilpotent element of the ring \((Z_n, \oplus, \ominus)\) and \(0 \leq k < l \leq m - 1\) imply that \(l - k < m\). This implies that \((l - k)\) is not a nilpotent element of \((Z_n, \oplus, \ominus)\), since it contradicts the minimal property of \(m\). So, the (5) is not compatible. From (4), we get \(2m = 0\). But \(2m \neq 0\), since \(2m < n\), which again leads to a contradiction. So, our assumption that \(E_k \cap E_l \neq \emptyset\) is wrong and \(E_k \cap E_l = \emptyset\), for \(0 \leq k < l \leq m\).

Theorem 2.3:
The subset \(E_c = E_0 \cup E_1 \cup \ldots \cup E_{m-1}\), of the edge set \(G(Z_n, N)\) is an edge cover of the graph \(G(Z_n, N)\).

Proof:
By the Theorem 2.1, each \(E_k \subseteq E, 0 \leq k \leq m - 1\) and thus \(E_c = E_0 \cup E_1 \cup \ldots \cup E_{m-1} \subseteq E\), where
\[E_k = \left\{ (k, m + k), 2m + k, 3m + k), \ldots, (im + k, (i + 1)m + k), \ldots, (n - m + k, k) \right\}\]
Arranging the vertices occurring in the edge subsets \(E_1, E_2, E_3, \ldots, E_k, \ldots, E_{m-1}\) given above in the array of Fig. 2, one can easily observe that all the vertices of the graph \(G(Z_n, N)\) occur exactly once in this array, since \(E_k \cap E_l = \emptyset\), by the Lemma 2.2.

Let \(v\) be any vertex of the graph \(G(Z_n, N)\). A glance at the above array of the vertices of \(G(Z_n, N)\) shows that \(v = jm + k\) for \(j, 0 \leq j \leq (n - m)/m\) and \(k, 0 \leq k \leq m - 1\).
Thus, the vertex \(v\) is incident with the edge \((jm + k, (j + 1)m + k)\) of \(E_k \subseteq E_c\) and this shows that \(E_c\) is an edge cover of \(G(Z_n, N)\).
Theorem 2.4:

The subset $E_c = E_0 \cup E_1 \cup \ldots \cup E_m$ of the edge is a minimum edge cover of $G(Z_n, N)$.

Proof:

By the Theorem 2.3, $E_c = E_1 \cup E_2 \cup \ldots \cup E_\kappa \cup \ldots \cup E_m$, is an edge cover of the graph $G(Z_n, N)$. Consider the set $E_0 = E_c - \left\{ (m+k, (i+1)m+k) \right\}$, of the edge set of the graph $G(Z_n, N)$, got by deleting the edge $e = (m+k, (i+1)m+k)$ from E_c, for some i and k, $0 \leq i \leq (n-m)/m$ and $0 \leq k \leq m-1$. The vertex $(m+k)$ as well as the vertex $(i+1)m+k$ of $G(Z_n, N)$ are not incident with any edge of E_0, as these vertices are incident with the edge $e = (m+k, (i+1)m+k)$ and this edge does not belong to E_0. This shows that E_0 is not an edge cover of the graph $G(Z_n, N)$, proving that E_c is a minimum edge cover of the graph $G(Z_n, N)$.

Theorem 2.5:

The edge covering number $\beta'(G(Z_n, N))$ of $G(Z_n, N)$ is given by:

$$\beta'(G(Z_n, D_0)) = \begin{cases} \frac{n}{2}, & \text{if } 2^2/n \\ \frac{n+m}{2}, & \text{if } 2^2 \n. \end{cases}$$

Proof:

Let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \ldots < p_r$ are primes, $\alpha_i \geq 1, 1 \leq i \leq r$ are integers, $\alpha_i \geq 1$, $1 \leq i \leq r$, such that $\alpha_i > 1$, for at least one i and let $m = p_1 p_2 \ldots p_r$. The following two cases arise.

Case (i):

Suppose $2^2 \mid n$. By the Theorem 2.4, the minimum edge cover E_c of the graph $G(Z_n, N)$ is the disjoint union of the subsets $E_0, E_1, \ldots, E_k, \ldots, E_m$ of edges, where:

$$E_k = \{0(m+k), 1(m+k), 2(m+k), 3(m+k), \ldots, (n(m+k), (i+1)(m+k)) \}, \ldots, \left(\frac{n}{m} - 2\right) (m+k), \left(\frac{n}{m} - 1\right) (m+k)\}.$$

It is easy to see that,

$$\circ(E_0) = \circ(E_1) = \circ(E_2) = \ldots = \circ(E_{m-1}) = \frac{1}{2} \left[\frac{n}{m} - 1 \right] + 1 = \frac{n + 2m}{2m},$$

and thus:

$$\circ(E_c) = \circ(E_0) + \circ(E_1) + \circ(E_2) + \ldots + \circ(E_{m-1}) = m \left(\frac{n + 2m}{2m} \right) = \frac{n}{2},$$

so that $\beta'(G(Z_n, N)) = \frac{n}{2}$.

Case (ii):

Let $2^2 \n n$. Again, by the Theorem 2.4, the minimum edge cover the graph $G(Z_n, N)$ is the disjoint union of the subsets $E_0, E_1, \ldots, E_k, \ldots, E_m$ of edges the graph $G(Z_n, N)$, where:

$$E_k = \{0(m+k), 1(m+k), 2(m+k), 3(m+k), \ldots, (i(m+k), (i+1)(m+k)) \}, \ldots, \left(\frac{n}{m} - 1\right) (m+k), \left(\frac{n}{m} - 1\right) (m+k)\}.$$

So,

$$\circ(E_0) = \circ(E_1) = \circ(E_2) = \ldots = \circ(E_{m-1}) = \frac{1}{2} \left(\frac{n}{m} - 1 \right) + 1 = \frac{n + m}{2m},$$

and thus:

$$\circ(E_c) = \circ(E_0) + \circ(E_1) + \circ(E_2) + \ldots + \circ(E_{m-1}) = m \left(\frac{n + m}{2m} \right) = \frac{n + m}{2}.$$

Hence edge covering number $\beta'(G(Z_n, N))$ of $G(Z_n, N)$ is $(n + m)/2$.

Example 2.6:

Consider the graph $G(Z_{18}, N)$, Here $n = 18 = 2 \cdot 3^2, m = 2 \cdot 3 = 6$ and $E_0 = \{0, 6, 12, 0\}$, $E_1 = \{1, 7, 13, 1\}$, $E_2 = \{2, 8, 14, 2\}$, $E_3 = \{3, 9, 15, 3\}$, $E_4 = \{4, 10, 16, 4\}$, and $E_5 = \{5, 11, 17, 5\}$, so that $E_c = \{0, 6, 12, 0, 1, 7, 13, 1, 2, 8, 14, 2, 3, 9, 15, 3, 4, 10, 16, 4, 5, 11, 17, 5\}$ is a minimum edge cover of $G(Z_{18}, N)$.
The edges in the above minimum edge cover of the graph $G(Z_{18}, N)$ are exhibited with boldface lines in the graph of $G(Z_{18}, N)$ given in Fig. 3. Observe that every vertex in the graph $G(Z_{18}, N)$ is incident with some edge in E_c.

Since $2^2 \nmid 18$, by the Theorem 2.5, the edge covering number $\beta'(G(Z_{n}, N))$ of the graph $G(Z_{18}, N)$ is $(18 + 6)/2 = 12$. This can be checked from the fact that the minimum edge cover E_c of the graph $G(Z_{18}, N)$ contains 12 edges.

Example 2.7:

Consider the graph $G(Z_{27}, N)$. Here $n = 27 = 3^3$, $m = 3$ and

$$E_0 = \left\{ (0, 3), (6, 9), (12, 15), (18, 21), (24, 0) \right\},$$

$$E_1 = \left\{ (1, 4), (7, 10), (13, 16), (19, 22), (25, 1) \right\},$$

$$E_2 = \left\{ (2, 3), (8, 11), (14, 17), (20, 23), (26, 2) \right\},$$

so that

$$E_c = \left\{ (0, 3), (6, 9), (12, 15), (18, 21), (24, 0), (1, 4), (7, 10), (13, 16), (19, 22), (25, 1),
\right.$$

$$\left(2, 3), (8, 11), (14, 17), (20, 23), (26, 2) \right\}.$$

is a minimum edge cover of $G(Z_{27}, N)$ and the edges are in the above minimum edge cover are exhibited with boldface lines in the graph of $G(Z_{27}, N)$ given in Fig. 4. Since $2^2 \nmid 27$, by the Theorem 2.5, the edge covering number $\beta'(G(Z_{n}, N))$ of the graph $G(Z_{18}, N)$ is $(27 + 3)/2 = 15$. This can be checked from the fact that the minimum edge cover E_c of the graph $G(Z_{27}, N)$ contains 15 edges.
Example 2.8:
Consider the graph $G(Z_{36}, N)$. Here $n = 36 = 2^2 \cdot 3^2$ and $m = 6$. So

$$E_0 = \left\{ \left(\overline{0}, \overline{6} \right), \left(12, 18 \right), \left(24, 30 \right) \right\}, \quad E_1 = \left\{ \left(\overline{1}, \overline{7} \right), \left(13, 19 \right), \left(25, 31 \right) \right\},$$

$$E_2 = \left\{ \left(2, 8 \right), \left(14, 20 \right), \left(26, 32 \right) \right\}, \quad E_3 = \left\{ \left(3, 9 \right), \left(15, 21 \right), \left(27, 33 \right) \right\},$$

$$E_4 = \left\{ \left(4, 10 \right), \left(16, 22 \right), \left(28, 34 \right) \right\} \quad \text{and} \quad E_5 = \left\{ \left(5, 11 \right), \left(17, 23 \right), \left(29, 35 \right) \right\},$$

so that

$$E_2 = \left\{ \left(\overline{0}, \overline{6} \right), \left(12, 18 \right), \left(24, 30 \right), \left(1, 7 \right), \left(13, 19 \right), \left(25, 31 \right), \left(2, 8 \right), \left(14, 20 \right), \left(26, 32 \right), \left(3, 9 \right), \left(15, 21 \right), \left(27, 33 \right), \left(4, 10 \right), \left(16, 22 \right), \left(28, 34 \right), \left(5, 11 \right), \left(17, 23 \right), \left(29, 35 \right) \right\}$$

is a minimum edge cover of $G(Z_{36}, N)$ and the edges in the above minimum edge cover of the graph $G(Z_{36}, N)$ are exhibited with boldface lines in the graph of $G(Z_{36}, N)$ given in Fig. 5. Since $2^2/36$, by the Theorem 2.5, the edge covering number $\beta'(G(Z_n, N))$ of the graph $G(Z_{36}, N)$ is $36/2 = 18$. This can be checked from the fact the minimum edge cover E_2 of the graph $G(Z_{36}, N)$ contains 18 edges.

3. **Edge Domination of the Nilpotent Cayley Graph $G(Z_n, N)$**

Let G be a graph. A subset F of the edge set E of G is called an edge dominating set of G, if each edge in $E - F$ is adjacent to some edge in F. An edge domination set of a graph G, consisting of minimum number edges of G is called a minimum edge dominating set of G. The number of edges in a minimum edge dominating set is called the edge domination number of G and it is denoted by $\gamma'(G)$. An edge dominating set and the related parameters of the graph $G(Z_n, N)$ are determined according as $2^2/n$ and $2^2 \cdot 1/n$.

Theorem 3.1:
If $2^2/n$, then the subset

$$E_d = \left\{ \left(\overline{0}, \left(\frac{n}{2} \right) \right), \left(\overline{1}, \left(\frac{n}{2} + 1 \right) \right), \left(\overline{2}, \left(\frac{n}{2} + 2 \right) \right), \ldots, \left(\overline{i}, \left(\frac{n}{2} + i \right) \right), \ldots, \left(\overline{\frac{n}{2} - 1}, \frac{n}{2} - 1 \right) \right\},$$

is of ordered pairs of vertices of the graph $G(Z_n, N)$ contains distinct edges of the graph $G(Z_n, N)$.

Proof:
Let $2^2/n$ and let

$$E_d = \left\{ \left(\overline{0}, \left(\frac{n}{2} \right) \right), \left(\overline{1}, \left(\frac{n}{2} + 1 \right) \right), \left(\overline{2}, \left(\frac{n}{2} + 2 \right) \right), \ldots, \left(\overline{i}, \left(\frac{n}{2} + i \right) \right), \ldots, \left(\overline{\frac{n}{2} - 1}, \frac{n}{2} - 1 \right) \right\}.$$

For $(\overline{i}, (\frac{n}{2} + i)), (\overline{j}, (\frac{n}{2} + j)) \in E_d$, let $(\overline{i}, (\frac{n}{2} + i)) = (\overline{j}, (\frac{n}{2} + j))$, for some $i, j, 0 \leq i < j \leq n/2 - 1$. This gives $i = j, j - i = 0$. Since $0 \leq i < j \leq n/2 - 1 < n$, this is a contradiction to the fact that $\overline{s} \neq \overline{0}$ for any positive integer $s < n$. So E_d contains distinct ordered pairs. Also, for $(\overline{i}, (\frac{n}{2} + i)) \in E_d$, for $0 \leq i \leq n/2 - 1$, we have $(\frac{n}{2} + i - i = \frac{n}{2})$.
Since $2^2/n$, we have $n = 2^ia_1p_1^{a_1}p_2^{a_2} \ldots p_r^{a_r}$, where $2 < p_2 < \ldots < p_r$ are primes, $a_1 \geq 2$ and $a_i \geq 1$, for $2 \leq i \leq r$, are integers. So $n/2 = 2^{a_1-1}p_1^{a_1}p_2^{a_2} \ldots p_r^{a_r}$ and $a_1 - 1 \geq 1$ and $a_i \geq 1$, for $2 \leq i \leq r$, so that $n/2$ is an integer. But $(n/2)$ is a nilpotent element of the ring $(\mathbb{Z}_n, \oplus, \odot)$, so that $(l, n/2 + i)$ is an edge of $G(Z_n, N)$. Thus, E_d contains distinct edges of the graph $G(Z_n, N)$.

Theorem 3.2:

If $2^2|n$, then the subset

$$E_d = \left\{ \left(\overline{0}, \left(\frac{n}{2} \right) \right), \left(\overline{1}, \left(\frac{n}{2} + 1 \right) \right), \left(2, \left(\frac{n}{2} + 2 \right) \right), \ldots, \left(i, \left(\frac{n}{2} + i \right) \right), \ldots, \left(\frac{n}{2} - 1, n - 1 \right) \right\}$$

of the edge set of $G(Z_n, N)$ is a minimum edge dominating set of the graph $G(Z_n, N)$.

Proof:

By Theorem 3.1, E_d is a subset of edges the graph $G(Z_n, N)$. By arranging the vertices occurring in the edges of E_d in the following way, one can observe that all the vertices of the graph $G(Z_n, N)$ are covered exactly once by the edges in E_d.

Let $(\overline{a}, \overline{b})$ be an edge in $E - E_d$. Since the vertices of $G(Z_n, N)$ are exactly the vertices occurring in the edges E_d (as in Fig. 6), it follows that either $\overline{a} = \overline{i}$ for some i, $0 \leq i \leq n/2 - 1$, or, $\overline{b} = \frac{n}{2} + j$, for some j, $0 \leq j \leq n/2 - 1$. In the first case the edge $(\overline{a}, \overline{b})$ in E_d is incident with the edge $(\overline{n/2 + i}, \overline{i})$ in E_d and in the second case, the edge $(\overline{a}, \overline{b})$ in E_d is incident with the edge $(\overline{n/2 + j}, \overline{j})$ in E_d. So, E_d is an edge dominating set of $G(Z_n, N)$.

Let E_1 be the edge set got by deleting one edge $(\overline{i}, \overline{n/2 + i})$ from the edge dominating set E_d, that is $E_1 = E_d - \left\{ \left(\overline{i}, \overline{n/2 + i} \right) \right\}$. Clearly, the edge $(\overline{i}, \overline{n/2 + i}) \notin E_1$, so that $(\overline{i}, \overline{n/2 + i}) \in E - E_1$. Further this edge $(\overline{i}, \overline{n/2 + i})$ is not adjacent to any edge of E_1, so that E_1 is not an edge dominating set of the graph $G(Z_n, N)$. These show that E_d is minimum edge dominating set of $G(Z_n, N)$.

Theorem 3.3:

If $2^2 \nmid n$, then the subset

$$E_d = \left\{ \left(\overline{0}, \left(\frac{n-m}{2} \right) \right), \left(\overline{1}, \left(\frac{n-m}{2} + 1 \right) \right), \ldots, \left(i, \left(\frac{n-m}{2} + i \right) \right), \ldots, \left(\frac{n-m}{2} - 1, \left(\frac{n-m}{2} + \frac{n-m}{2} - 1 \right) \right) \right\}$$

of ordered pairs of vertices of the graph $G(Z_n, N)$ contains distinct edges of the graph $G(Z_n, N)$.

Proof:

Let $2^2 \nmid n$. As in the Theorem 3.1, one can see that, E_d contains distinct ordered pairs of vertices of $G(Z_n, N)$. To see that each ordered pair in E_d represents an edge of the graph $G(Z_n, N)$. Let $\left(\overline{i}, \left((n-m)/2 + i \right) \right) \in E_d$, for $0 \leq i \leq n/2 - 1$. Then $(n-m)/2 + i = \left((n-m)/2 \right)$. Since $2^2 \nmid n$, either n is even (if $2|n$), or, odd (if $2 \nmid n$). Suppose that n is even say, then $n = 2p_2^{\alpha_2}p_3^{\alpha_3} \ldots p_r^{\alpha_r}$, where $2 < p_2 < \ldots < p_r$ are primes, $\alpha_i \geq 1$, for $2 \leq i \leq r$, are integers, and at least one $\alpha_i > 1$, for $2 \leq i \leq r$. Now:

$$n - m = m \prod_{i=2}^{r} p_i^{\alpha_i-1} - m = m \left[\prod_{i=2}^{r} p_i^{\alpha_i-1} - 1 \right].$$

Since p_2, p_3, \ldots, p_r are all odd, $\prod_{i=2}^{r} p_i^{\alpha_i-1}$ is odd and hence $\prod_{i=2}^{r} p_i^{\alpha_i-1} - 1$ is even. So, let $\prod_{i=2}^{r} p_i^{\alpha_i} - 1 = 2K$, for some positive integer K. Then $(n-m)/2 = (m \cdot 2K)/2 = mK$.

Vol 4 | Issue 5 | October 2023
Since \overline{m} is a nilpotent element of the ring $(\mathbb{Z}_n, ⋆, \circ)$, it follows that $K\overline{m}$, or $(\overline{(n-m)/2})$ is also a nilpotent element of the ring $(\mathbb{Z}_n, ⋆, \circ)$. This shows that $(\overline{i}, (n-m)/2 + \overline{i})$, $0 \leq i \leq n/2 - 1$ is an edge of the graph $G(\mathbb{Z}_n, N)$.

Let n be odd and let $n = \prod_{i=1}^{r} p_i^{\alpha_i}$, where $p_1 < p_2 < \ldots < p_r$ are all odd primes, $\alpha_i \geq 1$, $1 \leq i \leq r$ are integers, such that $\alpha_i > 1$, for at least one i. Then all p_i’s are odd and

$$n - m = \prod_{i=1}^{r} p_i^{\alpha_i} - m = m \left[\prod_{i=1}^{r} p_i^{\alpha_i - 1} - 1 \right].$$

Since p_1, p_2, \ldots, p_r are all odd, $\prod_{i=1}^{r} p_i^{\alpha_i - 1}$ is odd and hence $\prod_{i=1}^{r} p_i^{\alpha_i - 1} - 1$ is even. So $\prod_{i=1}^{r} p_i^{\alpha_i - 1}$, $-1 = 2M$ for some positive integer M. Then $(n-m)/2 = (m \cdot 2M)/2 = mM$.

Since $\overline{m} \in N$, implies that $(n-m)/2 = M\overline{m} \in N$, and thus $(\overline{i}, (n-m)/2 + \overline{i}), 0 \leq i \leq n/2 - 1$, is an edge of the graph $G(\mathbb{Z}_n, N)$.

Theorem 3.4:

If $2^2 \nmid n$, then the subset

$$E_d = \left\{ \left(\overline{0}, \left(\frac{n-m}{2}\right)\right), \left(\overline{1}, \left(\frac{n-m}{2} + 1\right)\right), \ldots, \left(\overline{i}, \left(\frac{n-m}{2} + i\right)\right), \ldots, \left(\left(\frac{n-m}{2} - 1\right), \left(\frac{n-m}{2} + \frac{n-m}{2} - 1\right)\right) \right\},$$

of the edge set of the graph $G(\mathbb{Z}_n, N)$ is a minimum edge dominating set of the graph $G(\mathbb{Z}_n, N)$.

Proof:

Consider the subset

$$E_d = \left\{ \left(\overline{0}, \left(\frac{n-m}{2}\right)\right), \left(\overline{1}, \left(\frac{n-m}{2} + 1\right)\right), \ldots, \left(\overline{i}, \left(\frac{n-m}{2} + i\right)\right), \ldots, \left(\left(\frac{n-m}{2} - 1\right), \left(\frac{n-m}{2} + \frac{n-m}{2} - 1\right)\right) \right\},$$

of the edge set of the graph $G(\mathbb{Z}_n, N)$. By arranging the vertices occurring in the edges of E_d in the following way, one can observe that all the vertices of the graph $G(\mathbb{Z}_n, N)$ are covered by the edges in E_d.

Let $(\overline{a}, \overline{b})$ be an edge in $E - E_d$. Since the vertices of $G(\mathbb{Z}_n, N)$ are exactly the vertices occurring in the edges in E_d (see Fig. 7), it follows that, either $\overline{a} = \overline{i}$, for some $i, 0 \leq i \leq (n-m)/2 - 1$, or, $\overline{b} = (n-m)/2 + \overline{j}$, for some $j, 0 \leq j \leq (n-m)/2 - 1$. In the first case the edge $(\overline{a}, \overline{b})$ in E_d is incident with the edge $(n-m)/2 + \overline{i}, \overline{j})$ in E_d. In the second case the edge $(\overline{a}, \overline{b})$ in E_d is incident with the edge $(\overline{n-m)/2 + j}, \overline{i})$ in E_d. So, E_d is an edge dominating set of the graph $G(\mathbb{Z}_n, N)$. Let E_1 be the subset of edges set by deleting the edge $(\overline{i}, (n-m)/2 + \overline{i}) \in E_d$, that is $E_1 = E_d - \left\{ \left(\overline{i}, (n-m)/2 + \overline{i}\right) \right\}$.

Then, the edge $(\overline{i}, (n-m)/2 + \overline{i}) \notin E_1$, so that $(\overline{i}, (n-m)/2 + \overline{i}) \in E - E_1$. Further this edge $(\overline{i}, (n-m)/2 + \overline{i})$ is not adjacent to any edge of E_1. So E_1 is not an edge dominating set of the graph $G(\mathbb{Z}_n, N)$ and E_d is a minimum edge dominating set of the graph $G(\mathbb{Z}_n, N)$.

Theorem 3.5:

The edge domination number $\gamma'(G(\mathbb{Z}_n, N))$ of $G(\mathbb{Z}_n, N)$ is given by:
Edge Domination of the Nilpotent Cayley Graph of the Residue Class Ring \((\mathbb{Z}_n, \oplus, \odot)\)

Madhavi et al.

Proof:

Example 3.7:

Let \(n = \prod_{i=1}^{r} p_i^{a_i}\), where \(p_1 < p_2 < \ldots < p_r\) are primes \(a_i \geq 1\) and \(1 \leq i \leq r\) are integers such that \(a_i \geq 1\) for at least one \(i\), and let \(m = p_1 p_2 \ldots p_r\).

Let \(2^2/n\). By the Theorem 3.2, the minimum edge dominating set \(E_d\) of \((\mathbb{Z}_n, N)\) is given by:

\[
E_d = \left\{ \left[0, \left(\frac{n}{2}\right)\right], \left[1, \left(\frac{n}{2} + 1\right)\right], \ldots, \left[i, \left(\frac{n}{2} + i\right)\right], \ldots, \left[\frac{n}{2} - 1, \frac{n - 1}{2}\right] \right\}.
\]

So, \(\alpha(E_d) = (n/2 - 1) + 1 = n/2\) and the minimum edge domination number \(\gamma'(G(\mathbb{Z}_n, N))\) is \(n/2\).

Let \(2^2 \nmid n\). Then by the Theorem 3.4, the minimum edge dominating set \(E_d\) of \((\mathbb{Z}_n, N)\) is given by

\[
E_d = \left\{ \left[0, \left(\frac{n - m}{2}\right)\right], \left[1, \left(\frac{n - m}{2} + 1\right)\right], \ldots, \left[i, \left(\frac{n - m}{2} + i\right)\right], \ldots, \left[\frac{n - m}{2} - 1, \frac{n - m}{2} - 1\right] \right\}.
\]

So, \(\alpha(E_d) = (n - m)/2 - 1 + 1 = (n - m)/2\), and thus the minimum edge domination number \(\gamma'(G(\mathbb{Z}_n, N))\) is \((n - m)/2\).

Example 3.6:

Let us consider the graph \((\mathbb{Z}_{36}, N)\). Here \(36 = 2^2 \cdot 3^2\), so that \(2^2/n\) and \(m = 6\). By the Theorem 3.2, the minimum edge dominating set \(E_d\) of the graph \((\mathbb{Z}_{36}, N)\) is given by \(E_d = \left\{ [0, 18], [1, 19], [2, 20], [3, 21], [4, 22], [5, 23], [6, 24], [7, 25], [8, 26], [9, 27], \ldots, [10, 30], [11, 31], [12, 32], [13, 33], [14, 34], [15, 35] \right\} \).

Since \(E_d\) contains 18 edges, the edge domination number of \((\mathbb{Z}_{36}, N)\) is \(36/2\).

The edges in the minimum edge dominating set \(E_d\) of the graph \((\mathbb{Z}_{36}, N)\) are exhibited by boldface lines in the graph of \((\mathbb{Z}_{36}, N)\) given in Fig. 8.

Example 3.7:

Let us consider the graph \((\mathbb{Z}_{18}, N)\). Here \(18 = 2 \cdot 3^2\), so that \(2^2 \nmid 18\) and \(n\) is even. Further \(m = 6\). By the Theorem 3.4, the minimum edge dominating set \(E_d\) of the graph \((\mathbb{Z}_{18}, N)\) is given by \(E_d = \left\{ [0, 6], [1, 7], [2, 8], [3, 9], [4, 10], [5, 11] \right\} \). Since \(E_d\) contains 6 edges, the edge domination number of \((\mathbb{Z}_{18}, N)\) is \(6/2\).

The edges in the minimum edge dominating set \(E_d\) of the graph \((\mathbb{Z}_{18}, N)\) are exhibited by boldface lines in the graph of \((\mathbb{Z}_{18}, N)\) given in Fig. 9.
Example 3.8:

Let us consider the graph $G(Z_{45}, N)$. Here $45 = 3^2 \cdot 5$, so that $2^2 \nmid 45$ and n is odd. Further $m = 15$. By the Theorem 3.4, the minimum edge dominating set E_d of the graph $G(Z_{45}, N)$ is given by $E_d = \{ (0, 15), (1, 16), (2, 17), (3, 18), (4, 20), (5, 22), (7, 23), (8, 24), (10, 25), (11, 26), (12, 27), (13, 28), (14, 29) \}$. Since E_d contains 15 edges, the edge domination number of $G(Z_{45}, N)$ is $15 = (45 - 15)/2$.

The edges in the minimum edge dominating set E_d of the graph $G(Z_{45}, N)$ are exhibited by boldface lines in the graph of $G(Z_{45}, N)$ given in Fig. 10.

Example 3.9:

Let us consider the graph $G(Z_{27}, N)$. Here $27 = 3^3$, which is a power of a single prime 3. So that $2^2 \nmid 27$ and 27 is odd. Further $m = 3$. By the Theorem 3.4, the minimum edge dominating set E_d of the graph $G(Z_{27}, N)$ is given by $E_d = \{ (0, 12), (1, 13), (2, 14), (3, 15), (4, 16), (5, 17), (6, 18), (7, 19), (8, 20), (9, 21), (10, 22), (11, 23) \}$. Since E_d contains 12 edges, the edge domination number of $G(Z_{27}, N)$ is $12 = (27 - 3)/2$.

The edges in the minimum edge dominating set E_d of the graph $G(Z_{27}, N)$ are exhibited by boldface lines in the graph of $G(Z_{27}, N)$ given in Fig. 11.
Acknowledgment

The authors express thanks to Prof. L. Nagamuni Reddy for his suggestions during the preparation of this paper.

Conflict of Interest

Authors declare that they do not have any conflict of interest.

References