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Abstract — In this paper, we use two radial kernels, the Generalized Multiquadrics and the 
linear Laguerre-Gaussians for the formulation of radial kernel collocation method for solving 
problems involving Fredholm integro-differential equations. The effect of the shape parameter 
contained in each of the kernels, on the accuracy of the method is investigated. The method is 
demonstrated using two examples the numerical results displayed in form of tables and graphs. 
MATLAB 2018a was used for the implementation. 

 
Keywords—Integro-differential equation; radial kernel; Gauss-Legendre quadrature formula; 
collocation method.  

 

I. INTRODUCTION  

A considerable number of science and engineering problems are modelled inform of integro-differential 
equations. According to [1], they arise naturally in a variety of physical problems in different areas of 
sciences such as biological science, physics, applied mathematics, engineering and other fields such as 
theory of elasticity, econometrics, biomechanics, heat and mass transfer, electromagnetic, electro-
dynamics, fluid dynamics, oscillating magnetic field. This category of equations is in many situations very 
complicated to be solved exactly, since, the solution cannot be exhibited in a closed form, though it might 
exist [2]. Thus, finding either the analytical approximation or numerical solution of these equations is of 
desirable interest.  

A vast range of problems has been successfully solved by the using different approaches such as can be 
found in [1], they solve examples to demonstrate the effectiveness of their method for the solution of linear 
and nonlinear Fredholm IDEs. However, there is no prescribed guarantee for the standard formulation that 
the collocation matrix will be non-singular [3].  

Several other collocation methods have been developed to solve these type of integral equations. These 
methods have been based on several basis functions like Chebyshev polynomials and cubic splines and 
have yielded results with various degrees of accuracy. For example, see [2], [4].   

Radial kernels on the other hand are powerful tools for multivariate interpolation. As noted in [5], radial 
basis function interpolants have the nice property of being invariant under all Euclidean transformations 
and this property is desirable in many applications. RBFs have been used extensively in the numerical 
solution of partial differential equations, mathematical finance and optimization amongst other areas [4]. 

The rest of the paper, we present radial kernel collocation method for solving problems involving 
Fredholm integro-differential equations and illustrate the efficacy of our method with two examples. We 
also show the relationship of the error bound with respect to the shape parameter and condition number. 

 

II. METHOD 

A. Preliminaries 
According to [6], Volterra studied the hereditary influences as he was investigating a population growth 

model. The research resulted in a set of equations, where both differential operators and the integral 
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operators appeared together in a single equation. The strange type of equations was called integro-
differential equations and precisely Fredholm integro-differential equation if the limits of integration are all 
constant [3]. A kth order linear Fredholm integro-differential equation is given as  

 

!𝑃!(𝑥)𝑢(!)(𝑥)
$

!%&

= 𝑓(𝑥) + 𝜆+ 𝑘(𝑥, 𝑡)
'

(
𝑢(𝑡)𝑑𝑡,																																																																																											(1) 

 
where the initial conditions 𝑢(!)(0) = 𝑏!, 𝑛 = 0, 1, 2, … , 𝑘 − 1. 

and 𝑢())(𝑥) = *!+
*,!
	. Since the resulted equations in (1) contains both the differential operator and the 

integral operator, and we wish to determine the particular solution 𝑢(𝑥) of the  Fredholm integro-differential 
equation (1). it is important first to define the initial conditions 𝑢(0), 𝑢-(0), . . ., 𝑢($./)(0). Any Fredholm 
integro-differential equation is characterized by the existence of one or more of the derivatives 
𝑢-(𝑥), 𝑢--(𝑥), … outside the integral sign [7], [8]. 

The radial kernels used in this work and their derivatives are defined as follows [5]: 
Generalized Multiquadric 
 
𝜑(𝑟) = ((𝜀𝑟)0 + 1)1/0     
𝜑-(𝑟) = 5𝜀0𝑟((𝜀𝑟)0 + 1)3/0  

𝜑--(𝑟) = 5𝜀0((𝜀𝑟)0 + 1)
"
#(3(𝜀𝑥)0 + (𝜀𝑟)0 + 1)   

 
Linear Laguerre Gaussian 
 
𝜑(𝑟) = 𝑒𝑥𝑝(−(𝜀𝑟)0)(2 − (𝜀𝑟)0)  
𝜑-(𝑟) = 2𝜀0𝑟	𝑒𝑥𝑝(−(𝜀𝑟)0)((𝜀𝑟)0 − 3)  
𝜑--(𝑟) = 2𝜀0	𝑒𝑥𝑝(−(𝜀𝑟)0)((𝜀𝑟)4 − 9(𝜀𝑟)0 + 3). 
 

B. Interpolation by Radial Kernels 
Radial kernel interpolation is an advanced method in approximation theory for the construction of higher 

order accurate interpolants for scattered data up to higher dimensional spaces. The interpolation takes the 
form of a weighted sum of radial kernels. It is a mesh free method, meaning that the nodes need not lie on 
a structured grid, and does not require the formation of a mesh. It is often spectrally accurate and stable for 
large numbers of data nodes even in higher dimensions [5].  

Given a data vector 𝒇 = (𝑓(𝑥/), 𝑓(𝑥0),⋯ , 𝑓(𝑥5))6 ∈ ℝ5  of function values obtained from some 
function 𝑓:ℝ* → ℝ at a finite point set Ξ = {𝑥/, 𝑥0, ⋯ , 𝑥5} ⊂ ℝ* , 𝑑 ≥ 1, is given. Scattered data 
interpolation entails finding an interpolant 𝑠:ℝ* → ℝ satisfying 

 

𝑠(𝑥)) = 𝑓(𝑥)),				for	𝑖 = 1,2,⋯ ,𝑁. 
 
The radial kernel interpolation scheme works with a radial function	𝜑:ℝ&

7 → ℝ, and the interpolant has 
the form 

 

𝑠(𝑥) =!𝑐)𝜑S𝜀T𝑥 − 𝑥8TU
5

8%&

 

 
where ‖∙‖ is the Euclidean norm and 𝜀 is the shape parameter. This gives an 𝑁 ×𝑁 linear system 
 

!𝑐8𝜑S𝜀T𝑥) − 𝑥8TU
5

8%&

= 	𝑓(𝑥)),			for	𝑖 = 1,2,⋯ ,𝑁 

 
which can be written in vector-matrix form as 
 

𝐴𝒄 = 𝒇 
 



   EJ-MATH, European Journal of Mathematics and Statistics 
ISSN: 2736-5484 

DOI: http://dx.doi.org/10.24018/ejmath.2023.4.3.213  Vol 4 | Issue 3 | June 2023 23 
 

where 𝐴 = 𝜑S𝜀T𝑥) − 𝑥8TU is an 𝑁 ×𝑁	 matrix and 𝒄 = (𝑐/, 𝑐0, ⋯ , 𝑐5)6. The matrix A is the 
interpolation matrix. We note that 𝜑S𝜀T𝑥) − 𝑥8TU = 𝜑S𝜀T𝑥8 − 𝑥)TU so that 𝐴 = 𝐴6 . The interpolant is 
unique if and only if the matrix 𝐴 is nonsingular. The existence of the interpolant has been shown in [9]. 

C. The Radial Kernel Collocation Method 
In this section we build a collocation method for the solution of k^th order linear Fredholm integro-

differential equations using radial kernels. 
Here we assume that the solution of (1) can be expressed in the form of the radial kernel interpolant as 
 

𝑢(𝑥) ≈ 𝑢\(𝑥) =!𝑐)𝜑(𝜀‖𝑥 − 𝑥)‖)
9

)%&

,			𝑚 > 𝑘		and		𝑥 ∈ ℝ																																																																								(2) 

 
We first of all select 𝑚− 𝑘 collocation points from the 𝑚 data sites 𝑥/, … , 𝑥9. In our method, we let 

𝜌 = ceil(𝑘/2) and 𝑞 = floor(𝑘/2), and so we use 𝑥:, … , 𝑥9.; as the 𝑚− 𝑘 collocation points. The 
collocation method is given as 

 

!𝑃!(𝑥8)𝑢\ (!)S𝑥8U
$

!%&

= 𝑓S𝑥8U + 𝜆+ 𝑘S𝑥8 , 𝑡U
'

(
𝑢\S𝑥8U𝑑𝑡,					𝑗 = 𝜌…𝑚 − 𝑞																																																(3) 

 
We now substitute the approximate solution (2) into equation (3) and apply the collocation conditions to 

obtain 
 

!𝑃!S𝑥8U j!𝑐)𝜑(!)S𝜀T𝑥8 − 𝑥)TU
9

)%&

k
$

!%&

= 𝑓S𝑥8U + 𝜆+ 𝑘S𝑥8 , 𝑡U
'

(
j!𝑐)𝜑(𝜀‖𝑡 − 𝑥)‖)
9

)%&

k 𝑑𝑡,			𝑗 = 𝜌…𝑚 − 𝑞 

 
Re-arranging this yields 
 

!𝑐) l!𝑃!(𝑥8)𝜑(!)S𝜀T𝑥8 − 𝑥)TU
$

!%&

− 𝜆+ 𝑘S𝑥8 , 𝑡U
'

(
𝜑(𝜀‖𝑡 − 𝑥)‖)𝑑𝑡m

9

)%&

= 𝑓S𝑥8U																																					(4) 

 
The integral in (4) is evaluated using a five-point Gauss-Legendre quadrature formula on the interval 

[−1, 1] as 
 

+𝑔(𝑥)
/

./

𝑑𝑥 =!𝑤<𝑔(𝑝<)	
1

<%/

 

 
where the 𝑤< ′𝑠 are the weights and the 𝑝< ′𝑠 are the integration points. To apply the rule over an arbitrary 

interval [𝑎, 𝑏], we use the change of variable [10]-[ 12]  
 

𝑡 =
𝑎 + 𝑏
2 +

𝑎 − 𝑏
2 𝑥			where			𝑑𝑡 =

𝑎 − 𝑏
2 𝑑𝑥 

 
Equation (4) can then be written as 
 

!𝑐! #!𝑃"%𝑥#'𝜑(")%𝜀*𝑥# − 𝑥!*'
&

"'(

−
𝜆
2
(𝑎 − 𝑏)2 𝑘 4𝑥# ,

𝑎 + 𝑏
2 +

𝑎 − 𝑏
2 𝑥	8

)

*)
𝜑 4𝜀 9

𝑎 + 𝑏
2 +

𝑎 − 𝑏
2 𝑥	 − 𝑥!98𝑑𝑥;

"

!'(

	

= 𝑓%𝑥#'																																																																																																																																																								(5) 
 
and applying the quadrature rule we obtain 
 

!𝑐! #!𝑃"%𝑥#'𝜑(")%𝜀*𝑥# − 𝑥!*'
&

"'(

−
𝜆
2
(𝑎 − 𝑏) ?!𝑤+𝑘 4𝑥# ,

𝑎 + 𝑏
2 +

𝑎 − 𝑏
2 𝑝+	8

,

+')

𝜑 4𝜀 9
𝑎 + 𝑏
2 +

𝑎 − 𝑏
2 𝑝+ 	− 𝑥!98B;

"

!'(
= 𝑓%𝑥#'																																																																																																																																																								(6) 

 
The 𝑚 coefficients 𝑐/, … , 𝑐9 of the approximate will require us solving a system of 𝑚 linear equations. 
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Equation (6) gives 𝑚− 𝑘 linear equations in 𝑐/, … , 𝑐9 while the remaining 𝑘 equations are obtained by 
evaluating the approximate solution at the initial conditions. This gives  

 

𝑢\ (!)(0) =!𝑐)𝜑(!)(𝜀‖0 − 𝑥)‖)
9

)%/

= 𝑏!,				𝑛 = 0,… , 𝑘	 − 1																																																																								(7)		

 
Equations (6) and (7) together yield the system of 𝑚 equations in 𝑚 unknowns [11]. 

D. Shape Parameter 
In this work, we use the brute force method to compute a suitable estimate for the shape parameter ε. The 

brute force method consists of performing various interpolation experiments with different values of the 
shape parameter ε, and then choosing the value of the shape parameter that best minimizes the interpolation 
error. Thus, this is achieved by plotting the graph of interpolation error against the shape parameter. The 
minimum point on the curve gives the optimal value of the shape parameter ε [13].  
 

III. NUMERICAL RESULTS 

In this section wee demonstrate the viability of the radial kernel collocation method using two test 
problems. 

Problem 1. Consider the second order integro-differential equation of Fredholm type with constant 
coefficients 

 

𝑢--(𝑥) = 𝑒, − 𝑥 ++ 𝑥𝑦	𝑢(𝑦)
/

&
𝑑𝑦 

 

with 𝑢(0) = 1, and 𝑢-(0) = 1 on the interval [0,1]. The exact solution is 𝑢(𝑥) = 𝑒,, for this problem 
𝜌 = 𝑐𝑒𝑖𝑙 y0

0
z = 1 and 𝑞 = 𝑓𝑙𝑜𝑜𝑟 y0

0
z = 1, 𝑎 = 0, 𝑏 = 1 and 𝑘 = 2. We will solve the problem for 𝑚 = 11. 

Thus, the collocation points will be 𝑥0, … , 𝑥/&. For 𝑚 = 	11 we have ℎ = /
/&

. We used generalized 
Multiquadrics and linear Laguerre Gaussian kernels 
 

 
Fig. 1. (a) and (b) The Behaviour of the Shape Parameter with Respect to Maximum Error and (c) and (d) Condition Number, for the 

Collocation Solution of Problem 1 using Generalized Multiquadrics and Linear Laguerre-Gaussian Kernel with 𝑚	 = 11, 𝜀 = 1.4 
Respectively. 
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TABLE I: APPROXIMATE SOLUTION AND ERROR FOR THE SOLUTION OF PROBLEM 1 USING GENERALIZED MULTIQUADRICS AND LINEAR 
LAGUERRE GAUSSIAN, (M = 11, 𝜀 = 1.4) 

Points x! 
Exact 

Solution 

Approximate 
Solution (G. Multi-

quadrics) 

Absolute Error (G. 
Multi-quadrics) 

Approximate 
Solution (LL 

Gaussian) 

Absolute Error (LL 
Gaussian) 

1 -1 0.368065 0.367879       1.851255× 10"# 
0.449329       1.052292× 10"$ 
0.548812       7.418663× 10"$ 
0.670320       3.794713× 10"$ 
0.818731       2.253456× 10"$ 
1.000000       1.023000× 10"%& 
1.221403       2.463064× 10"$ 
1.491825       3.552700× 10"$ 
1.822119       9.342076× 10"$ 
2.225541       1.232835× 10"' 
2.718282       5.313245× 10"# 

0.367879        3.204464× 10"# 
0.449329        4.474686× 10"( 
0.548812        1.458191× 10"' 
0.670320        7.608273× 10"$ 
0.818731        4.479410× 10"$ 
1.000000        9.535000× 10"%& 
1.221403        4.911218× 10"$ 
1.491824        7.122362× 10"$ 
1.822119        1.840068× 10"$ 
2.225541        2.216519× 10"' 
2.718282         9.669150× 10"# 

2 -4/5 0.449328 
3 -3/5 0.548819 
4 -2/5 0.670324 
5 -1/5 0.818733 
6 0 1.000000 
7 1/5 1.221400 
8 2/5 1.491821 
9 3/5 1.822109 

10 4/5 2.225553 
11 1 2.717750 

 
Problem 2. Consider the second order integro-differential equation of Fredholm type with variable 

coefficients 
 

𝑢--(𝑥) + 𝑥𝑢-(𝑥) − 𝑥𝑢(𝑥) = 𝑒, − 2𝑠𝑖𝑛(𝑥) + + 𝑠𝑖𝑛(𝑥) 𝑒.=𝑢(𝑦)
/

./
𝑑𝑦 

 
with 𝑢(0) = 1, and 𝑢-(0) = 1 on the interval [0,1]. The exact solution is 𝑢(𝑥) = 𝑒,, for this problem 

𝑘 = 2. 𝛼 = 𝛽 = 1, 𝑎 = 1, on the interval [0, 1]. The problem is solved for 𝑚 = 17	. Thus, the collocation 
points will be 𝑥0, … , 𝑥/>. We used generalized Multiquadrics and linear Laguerre Gaussian kernels. 

 

 
Fig. 2. (a) and (b) The Behaviour of the Shape Parameter with Respect to Error and (c) and (d) Condition Number for the 

Collocation Solution of Problem 2 using generalized Multiquadrics and Linear Laguerre Gaussian Kernel with 𝑚	 = 17, 23 
respectively. 

 
TABLE II: APPROXIMATE SOLUTION AND ERROR FOR THE SOLUTION OF FREDHOLM INTEGRO-DIFFERENTIAL EQUATION USING 

GENERALIZED MULTIQUADRICS AND LINEAR LAGUERRE GAUSSIAN, (𝑚 = 17, 𝜀 = 1) 
Points x! Exact 

Solution 
Approximate 

Solution 
(Multiquadrics) 

Absolute Error 
(Multiquadrics) 

Approximate 
Solution 

(LL Gaussian) 

Absolute Error (LL 
Gaussian) 

1 -1 0.367879 0.367879           8.968316× 10"( 0.367879  2.212018× 10"$ 
2 -7/8 0.416862 0.416862 2.7447000× 10") 0.416862  5.183214× 10") 
3 -6/8 0.472367 0.472367 3.655369× 10"( 0.472367   8.563639× 10") 
4 -5/8 0.535261 0.535261 4.737887× 10") 0.535261   8.148962× 10"* 
5 -4/8 0.606531 0.606531 6.810450× 10") 0.606531   1.080118× 10"( 
6 -3/8 0.687289 0.687289 1.156636× 10"( 0.687289   4.004509× 10") 
7 -2/8 0.778801 0.778801 6.596934× 10") 0.778801  7.288332× 10") 
8 -1/8 0.882497 0.882497 1.667250× 10"( 0.882497  5.581526× 10") 
9 0 1.000000 1.000000 1.096705× 10"( 1.000000   1.101389× 10"( 

10 1/8 1.133148 1.133148 1.227157× 10"( 1.133148 1.491695× 10") 
11 2/8 1.284025 1.284025 1.402587× 10"( 1.284025  7.106465× 10"( 
12 3/8 1.454991 1.454991 9.548872× 10") 1.454991    1.270210× 10"( 
13 4/8 1.648721 1.648721 1.933080× 10"( 1.648721 8.583456× 10") 
14 5/8 1.868246 1.868246 1.624123× 10"( 1.868246 1.817695× 10") 
15 6/8 2.117000 2.117000 2.188568× 10"( 2.117000 4.305514× 10") 
16 7/8 2.398875 2.398875 1.448256× 10"( 2.398875 1.317918× 10"( 
17 1 2.718279 2.718282 2.285417× 10"$ 2.718282 4.434408× 10"$ 
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IV. DISCUSSION AND CONCLUSION 

The results for the radial kernel collocation solution of Problem 1 using generalized Multiquadrics and 
linear Laguerre Gaussian m=11, ε=1.4 are provided in Table I. In Table I with m=11, ε=1.4, we observed 
that absolute errors for the two radial kernels are similar. We also observed same from the graph of the 
behaviour of shape parameter against error in Fig. 1 (a) and (b). The graph of the behaviour of shape 
parameter against condition number of the system matrix in Fig. 1 (c) and (d) showed that, both kernels 
generate a more stable system at their optimal shape parameter value ε=1.4. The error was more pronounced 
around the origin with small values of the shape parameter for both kernels, when the system was well-
conditioned using LL Gaussian, while using generalized Multiquadrics kernel, the error was high between 
0 and 0.4 in the same region where the system was also badly conditioned. The numerical results for 
problem 2 are also display in form of tables and graphs as shown in Table II and Fig. 2. In Table II with 
m=17,and ε=1, we observed that the absolute error for the two radial kernels are again similar. We also 
observed same from the graph of the behaviour of shape parameter against error in Fig. 2 (a) and (b). The 
graph of the behaviour of shape parameter against condition number of the system matrix in Fig. 2 (c) and 
(d) showed that, the system matrix at their optimal shape parameter value ε=1 is unstable. It can be 
concluded that this method of collocation presents a strong alternative technique for solving Fredholm 
integro-differential equations. It is also recommended that the optimal estimate for the shape parameter be 
obtain when using kernels that contain such parameter.  
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