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Theoretical Analysis of Nonlinear Equation in
Reaction-Diffusion System: Hyperbolic Function Method
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Abstract - The nonlinear reactions-diffusion process describes a chemical reaction that involves
three species, two reactions, and diffusion. The system of equations coupled with the nonlinear
reaction terms with mixed Dirichlet and Neumann boundary conditions is solved analytically.
The hyperbolic function method is used an approximate analytical expression of species
concentrations. These analytical results are compared with numerical and previous available
analytical results and are in good agreement.

Keywords - Mathematical model, Reaction diffusion equations, Hyperbolic function method,
Numerical simulation.

I. INTRODUCTION

The chemical reaction 24+ B — product which we decompose as a pair of simultaneous binary reactions
involving an intermediate species C.

yl
A+B —>C 1)
A+C 5 product 2)

where A and p denotes the binary reaction rates. To characterize reactions in the film model for a
gas/liquid interface, [1] thought about the equivalent time-dependent system of this problem for boundary
conditions of a very different type. Reference [2]-[4] have recently used a variety of techniques to solve
several problems related to the exchange of stabilities (upper and lower solutions). Reference [5] discusses
the presence of solutions but also the existence, uniqueness, and characterization of a limit when the rate
of the fast reaction approaches infinite. Reference [6] derived the analytical expression of concentrations
for the full range of enzyme activities using the homotopy perturbation method.

In this paper, a new and innovative semi-analytical technique, namely hyperbolic function method
(HFM), is employed for solving three nonlinear reaction diffusion equation. The differential equation and
its derivatives are needed to solve the trial solution of the equation. The approach's usefulness and
effectiveness are shown by comparing the analytical results with the numerical method.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

The steady-state nonlinear reaction-diffusion equations for a three-component chemical system [5] are
given as follows:

d:;(f) —2u(x)v(x) —u@)wk) =0 o
a:;(f) —du()v(x) =0 @
% +Au()v(x) —u(x)wx) =0 .

where u(x), v(x) and w(x) denotes the dimensionless concentrations of the chemical species 4, B and
C respectively. The boundary conditions are
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dv

Atx=0, u= a>0, EZO’W: 6)
= du _ = aw _
Atx=1, —=0, wv=p —=0 (7
The reaction rate q is given by
q= Aux)v(x) (®)
III. RESULTS

A. Approximate Analytical Expression of the Concentrations Using Hyperbolic Function Method.

Many asymptotic methods for solving nonlinear reaction-diffusion equations have been developed.
Recently the homotopy perturbation method [7]-[10], Adomian decomposition method [11], [12],
Variational iteration method [13], [14], Pade approximations [15], [16], and hyperbolic function method
[17]-[19], Rajendran-Joy method [20] are applied to solve the nonlinear equations in physical and chemical
sciences.

The hyperbolic function method assumes that a solution function with unknown constant coefficients
will satisfy both the initial conditions and the differential equation. Then, the unknown coefficients are
calculated using algebraic equations concerning the initial condition and their derivatives. The analytical
expression of the concentration of species u(x),v(x) and w(x) for all dimensionless parameters is
obtained (Appendix-A) as follows:

a cosh m (1-x)

u(x) = cos(h\/m_ ) )
_ B cosh(vViax

v(x) - cosh(y/A a) (10)
h p (1-x)

w(x) = —“"SCOS’;W z (11)

where m and p is obtained by solving below (12) and (13) using wolfram alpha.com (online free
software) for the given values of the parameters a, 3,y and A.

m? — ABsech\/la)—y =0 (12)
p*y + afAsechJla) —ay =0 (13)

Using (8) the reaction rate g is given by

__ afAcoshm(1-x) cosh(m x)
q(x) - coshm cosh(\/1 a) (14)

B. Previous Analytical Results

Reference [6] solved (3)-(5) with boundary conditions (6) and (7) using the Homotopy perturbation
method. They derived the concentrations of species as follows:

u(x)=a+%x2aﬁ,1+%x2ay—xaﬁ/1—ayx (15)
v(x) = B+ a pAx? - 1) (16)
w(x):y—%xzaﬁl+%x2ay+xaﬁl—ayx (17)

The reaction rate q is given by

q=/1(a+%x2a[>’/1+%x2ay—xaﬁl—ayx)(ﬁ+%a[)’/l(xz—l)) (18)

C. Numerical Simulation

Numerical methods are used to solve the nonlinear (3)-(5) for the mixed Dirichlet and Neumann
boundary conditions (6) and (7). The initial boundary value problems for the ordinary partial differential
equation were solved using the MATLAB function. The Matlab program is also given in Appendix B. The
numerical results are compared with our analytical and previous results in Tables I-III. The average error
deviation between our result (HFM method) and the numerical result is less than the average error deviation
between the previous result (HPM method) and the numerical result for all values of parameters.
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TABLE I: COMPARISON OF DIMENSIONLESS CONCENTRATION OF SPECIES u(x) WITH SIMULATION RESULTS AND PREVIOUS
ANALYTICAL RESULTS FOR o = 0.1,§=2, and y=0.1
A=0.1 1=05

Error % Error % Error %  Error %
HFM (9) HPM HEM (9) HPM HFM (9) HPM [6]

This work [6](15) M ©)  HPMI6]  Numerical .00 o 161 (15)

Numerical

This work (15) This work  (15)

0 0.1000  0.1000  0.1000 0.0000 0.0000 0.1000 0.1000 0.1000 0.0000  0.0000
0.2 0.0950  0.0951 0.0945 0.1053 0.5263 0.0855 0.0855 0.0800 0.0000  6.4327
0.4 0.0913  0.0914  0.0903 0.1095 1.0953 0.0748 0.0754 0.0645 0.8021 13.770
0.6 0.0886  0.0887  0.0873 0.1129 1.4673 0.0676 0.0683 0.0535 1.0355  20.858
0.8 0.0870  0.0872  0.0855 0.2299 1.7241 0.0634 0.0642 0.0470 1.2618  25.867
1 0.0865  0.0867  0.0850 0.2312 1.7341 0.0621 0.0625 0.0450 0.6441 27.536
Average error (%) 0.1315 1.0908 Average error (%) 0.6239 15.744

TABLE II: COMPARISON OF DIMENSIONLESS CONCENTRATION OF SPECIES v(x) WITH SIMULATION RESULTS AND PREVIOUS
ANALYTICAL RESULTS FOR a = 0.1 and §=0.1

A=0.1 A=5
Error % Error % Error % Error %
x Numerical I"l:llljl?vi(l)?lz [;I?lvé) HFM (10) HPM[6] Numerical 1121}11:11:/[\;(1)?11 [;illvé) HFM (10) HPM [6]
This work (16) This work (16)
0 0.0995 0.0995  0.0995 0.0000 0.0000 0.0811 0.0793  0.0750 2.2195 7.5216

0.2 0.0995 0.0995  0.0995 0.0000 0.0000 0.0819 0.0801  0.0760 2.1978 7.2039
0.4 0.0996 0.0996  0.0996 0.0000 0.0000 0.0842 0.0826  0.0791 1.9002 6.0570
0.6 0.0997 0.0997  0.0998 0.0000 0.1003 0.0881 0.0867  0.0842 1.5891 4.4268
0.8 0.0998 0.0998  0.0999 0.0000 0.1002 0.0935 0.0926  0.0913 0.9627 2.3529
1 0.1000 0.1000  0.1000 0.0000 0.0000 0.1000 0.1000  0.1000 0.0000 0.0000
Average error (%) 0.0000 0.3341 Average error (%) 1.4782 4.5937

TABLE III: COMPARISON OF DIMENSIONLESS CONCENTRATION OF SPECIES w(x) WITH SIMULATION RESULTS AND PREVIOUS
ANALYTICAL RESULTS FOR a = 0.1,$=0.01, and y=0.1
A1=0.1 1=5

Error % Error % Error % Error %
HFM (11) HPM HFM (11) HPM HEM (1) HPM [6]

. HFM (11) HPM[6] Numerical .
This work [61(17) This work a7 This work [6] (17) This work  Eq. (17)

0 0.1000 0.1000 0.1000 0.0000 0.0000 0.1000 0.1000  0.1000 0.0000 0.0000
0.2 0.0983 0.0983 0.0982 0.0000 0.1017 0.0991 0.0991 0.0991 0.0000 0.0000
0.4 0.0970 0.0969 0.0968 0.1031 0.2062 0.0983 0.0982  0.0984 0.1017 0.1017
0.6 0.0961 0.0960 0.0958 0.1041 0.3122 0.0979 0.0978  0.0977 0.1021 0.2043
0.8 0.0956 0.0954 0.0952 0.2092 0.4184 0.0976 0.0976  0.0976 0.0000 0.0000
1 0.0954 0.0952 0.0950 0.2096 0.4193 0.0975 0.0971 0.0970 0.4103 0.5128

|| Average error (%) 0.1043 0.2430 Average error (%) 0.1023 0.1365

Numerical

IV. DiscuUsSION

Equations (9)-(11) are the new, closed and simple approximate analytical expressions concentrations of
species A, B and C, which depend on the dimensionless parameters o, 3,y and A.

The effects the various parameter a, f, y and A on species concentration profiles u(x) are shown in Fig.
1 (a-d). From Fig-1(a) it is observed that the concentration of species A (i.e u(x)) increases when the
parameter o increases. Additionally, as the reaction parameters [,y and A decreases, species A's
concentration u(x) rises.

Fig. 2 (a-c) represents the concentration of species B (i, e v(x)) for all values of parameters. It is noticed
that decrease in the parameters o, A leads to a decrease in the value of concentration. Moreover, as P raises,
the concentration increases.

The effect of the parameters on the concentration of species C is represented in Fig. 3 (a-c). From the
figure, it is observed that the concentration of species increases when o decreases. It shows an increasing
concentration profile as other parameter values f, y and A increase.

Fig. 4 illustrates the reaction rate vs the distance for all possible parameter values. From the figure, it can
be seen that the reaction rate increases when o, , and A increases or b decreases.
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Fig. 1. Comparison of analytical expression (Eq. (9)) of concentration of species u(x) with simulation result for all value of

parameters o, B, y and A.
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Fig. 2. Comparison of analytical expression (Eq. (10)) of concentration of species v(x) with simulation result for all value of
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Fig. 3. Comparison of analytical expression (Eq. (11)) of concentration of species w(x) with simulation result for all value of

parameters a, B, y and A.
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Fig. 4. Reaction rate versus dimensionless distance for all value of parameters a, B, y and A using Eq. (14).
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V. CONCLUSION

The steady-state nonlinear differential equations have been solved analytically. Approximate analytical
expressions about the concentrations of species for all the values of parameters are obtained using the
hyperbolic function method. The numerical simulation compares and validates the obtained species
concentrations for all parameter values. These results were in agreement, therefore providing a good
understanding of the system and optimising the parameters in the chemical reaction model.

APPENDIX
Nomenclature

Symbols Description Units
u(x) Dimensionless concentration of chemical species A None
v(x) Dimensionless concentration of chemical species B None
w(x) Dimensionless concentration of chemical species C None
X Dimensionless distance None

a Fixed concentration of chemical species A None

B Fixed concentration of chemical species B None

Y Fixed concentration of chemical species C None

A Dimensionless parameter None

q Dimensionless reaction rate None

A. Appendix A: Analytical Solution of Nonlinear Equations (3)- (5) Using HFM
Assume that the solution to Egs. (3-5) is of the following hyperbolic function form:

u(x) = A, cosh(m x) + B, sinh(m x) (A1)
v(x) = A, cosh(n x) + B, sinh(n x) (A2)
w(x) = A, cosh(p x) + B, sinh(p x) (A3)

where Ay, 44, 4,, By, B1, B,, m,n and p are constant. The values of 4y, 4, 4,, By, B;, Byare found easily
from boundary conditions (6) and (7), that is

— a sinh (m) _ B
cosh (m) ’ 1™ cosh n)’

B, =04, =y, and B, = ~L30® Ay

AO = a'BO = cosh (p)

As aresult, Egs. (A1-A3) becomes

y cosh p (1-x)

_ acoshm (1-x) _ B cosh(nx) _
u(x) - coshm ? U(x) ~ cosh(n) and W(X) - coshp (AS)
We use the general form of Egs. (3)-(5) to find the constant m, n and p in Eq. (AS).
_ dzu(x) _ _ _
F(x) = — Au(x)v(x) —ul)w(x) =0 (A6)
G(x) = L9 ) uw(x) =0 (A7)
T dx? -
H@) = dfiu;(zx) +Au(x)v(x) —ul)w(x) =0 (A8)
We obtain Egs. (A6)-(A8) by substituting it for Egs. (AS5)
F(x)|yzo = m? —ABsechJ2a)—y =0 (A9)
G(X)|yeo = N> —2a=0 (A10)
H(x)|yz0 =p?*y + aBAsechJla)—ay =0 (A11)
it shows that
m? — ABsech\/JAa)—y =0 (A12)
n=.,1a) (A13)
p*y + afAsechJla) —ay =0 (A14)
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B. Appendix B: MATLAB Code for Numerical Solutions of the Nonlinear Reaction -Diffusion
Equations (3)-(5).

function pdex2

m=0;

x = linspace(0,1);

t=linspace(0,100000);

sol = pdepe(m,@pdex4pde,@pdexdic,@pdexdbe,x,t);

ul =sol(:,:;,1);
u2 =sol(:,:,2);
u3 =sol(:,:,3);
%

figure
plot(x,ul(end,:))
title('ul(x,t)")

xlabel('Distance x')
ylabel('ul(x,1)")

%

figure
plot(x,u2(end,:))
title('u2(x,t)")
xlabel('Distance x')
ylabel('u2(x,2)")

%

figure
plot(x,u3(end,:))
title('u3(x,t)")
xlabel('Distance x')
ylabel('u3(x,3)")

%
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=[1;1;1];

f=[1;1; 1] .* DuDx;

y =u()*u(2);

yl=u(1)*u(3);

h=0.1;

F=-h*y-yl;

F1=-h*y;

F2=h*y-yl1;

s=[F;F1;F2];

function u0 = pdex4ic(x);

%create a initial conditions

u0 =10; 1; 0];

function [pl, ql, pr, qr] =pdex4bc(x], ul, xr, ur, t)
%create a boundary condition

pl =[ul(1)-2; 0; ul(3)-0.001];

ql =[0; 1; 0];
pr = [0; ur(2)-0.5; 0];
qr=[1;0; 1];
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