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Abstract — Modelling and forecasting the volatility of a financial time series has become 

essential in many economic and financial applications like portfolio optimization and risk 

management. The symmetric-GARCH type models can capture volatility and leptokurtosis. 

However, the models fail to capture leverage effects, volatility clustering, and the thick tail 

property of high-frequency financial time series. The main objective of this study was to apply 

the asymmetric-GARCH type models to Kenyan exchange to overcome the shortcomings of 

symmetric-GARCH type models. The study compared the asymmetric Conditional 

Heteroskedasticity class of models: EGARCH, TGARCH, APARCH, GJR-GARCH, and 

IGARCH. Secondary data on the exchange rate from January 1993 to June 2021 were obtained 

from the Central Bank of Kenya website. The best fit model is determined based on parsimony 

of the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Log-

Likelihood criterion, and minimisation of prediction production errors (Mean error [ME] and 

Root Mean Absolute error [RMAE]). The optimal variance equation for the exchange rates data 

was APARCH (1,1) - ARMA (3,0) model with a skewed normal distribution (AIC = -4.6871, BIC 

= -4.5860). Volatility clustering was present in exchange rate data with evidence of the leverage 

effect. Estimated Kenya’s exchange rate volatility narrows over time, indicating sustained 

exchange rate stability. 
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I. BACKGROUND INFORMATION  

Most investors and financial analysts are concerned about the uncertainty of the returns on their 

investment assets caused by the variability in speculative market prices, market risk, and business 

performance instability [1]. Volatility is considered an important concept for many economic and financial 

applications, like portfolio optimization, risk management, and asset pricing. Volatility refers to the degree 

of fluctuations of an observed phenomenon over time [2]. In financial economics, volatility is commonly 

defined as “the (instantaneous) standard deviation of the random Wiener-driven component in a continuous-

time diffusion model” [3]. For instance, if the returns of an asset have large swings, it is said to have higher 

volatility. In turn, common volatility models relate to the "the conditional variance" of the underlying series 

[4]. As such, modelling and forecasting the volatility of a financial time series has become an essential area 

in research. 

Most financial time series possess volatility and have unique features referred to as stylized financial 

time series facts, which include the absence of autocorrelations, heavy tails, asymmetry in time scales, 

volatility clustering, and leverage effect [5]. Linear time series models are not effective for describing the 

features of a volatility series as they assume the existence of linear dependence in given series [6]. 

Furthermore, the linear models are built on the homoscedastic assumption which may not necessarily be 

held in most time-series data as they might be highly time-variant. Time series data like exchange rates 

usually exhibit volatility clustering resulting in the violation of the homoscedastic assumption of the 

equality of variance over time [7]. Therefore, non-linear models, for example, symmetric and asymmetric-

GARCH type models, have been proposed as suitable models. 

Symmetric properties of financial time series modelling were introduced by Engle and Nelson in 1990s 

[8]. The symmetric-GARCH models capture leptokurtosis and volatility clustering properties. However, 

the symmetric-GARCH type model fails to model the leverage effect property, a situation when an 

unanticipated reduction in prices increases anticipated volatility more than an unanticipated growth in the 

price of similar magnitude [9]. Another problem of symmetric GARCH-type models is that they do not 

always fully embrace the thick tails property of high-frequency economic time series. Studies have also 
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criticized the symmetric GARCH model that despite the innovation the magnitude of change only 

influences the restricted variance. That is, both past negative and positive fluctuations have the same impact 

on the current volatility. This is because the conditional variance must be nonnegative. As a result, the 

parameters are often constrained to be nonnegative [10]. Conclusively, Asymmetric-GARCH type models 

have the restricted variance only depending on the magnitude or size and not the sign of the underlying 

shock; the model does not capture the asymmetry effect in financial time series returns data [11]. 

To address the shortcoming of symmetric GARCH models, asymmetric GARCH type models have been 

proposed, such as the Exponential GARCH (EGARCH) model by Nelson [12], Glosten, Jagannathan, and 

Runkle GARCH (GJR-GARCH) model by Glosten et al. [13] and the Asymmetric Power ARCH 

(APARCH) model by Ding et al. (1993), The Threshold GARCH (TGARCH), and the Integrated GARCH 

(IGARCH) model by [11] are more suitable models because they capture the time-varying variance of such 

time series [14]. Asymmetry implies that unanticipated bad news increases restricted volatility more than 

unanticipated good news of similar magnitude [15].  For instance, the EGARCH model uses the natural 

logarithm to model the restricted variance unlike the GARCH model, which models the variance directly. 

Thus, parameter boundaries are not required to guarantee a positive restricted variance. Therefore, 

asymmetric-GARCH-type models tolerate asymmetric effects of positive and negative innovation [16]. 

Most empirical studies have demonstrated that asymmetric GARCH type models are more robust 

compared to the symmetric GARCH type models. The stock market has been a common area where 

volatility models have been useful, for instance, to model the volatility of stock revenues. In Kenya, Wagala 

et al. [17] examined the most efficient model from the symmetric {ARCH(q) and GARCH (p, q)} and the 

asymmetric GARCH {IGARCH (p, q), EGARCH (p, q), and TGARCH (p, q)} models to fit the Nairobi 

Securities Exchange Weekly Returns data. Based on the minimisation of Shwartz Bayesian Criteria (SBC), 

Akaike Information Criteria (AIC), and the Mean Squared Error (MSE), His study findings revealed that 

the AR-Integrated GARCH (IGARCH) models with student’s t-distribution are the best models for 

modelling volatility in the Nairobi Stock Market data. Petrică and Stancu [18] empirically examined how 

symmetric GARCH type models (ARCH and GARCH) and the asymmetric-GARCH type models 

(EGARCH, TGARCH, and PARCH) can capture the volatility of daily returns of EUR/RON exchange 

ratio. All the asymmetric models were better than the standard ARCH in minimising the volatility prediction 

errors. The best model for the daily returns of EUR/RON exchange ratio data was EGARCH (2,1), assuming 

that the data follows a student’s t distribution (AIC ≈ 0.7880). 

Hasbalrasol et al. [19] examined volatility models' accuracy and predictive performance for the monthly 

Sudanese exchange rate (SDG/USD) return data from 1999 January to 2013 December. The study compared 

the standard GARCH, Asymmetric GARCH, and ARMA models assuming the non-normal and normal 

Student distributions. The findings revealed that the asymmetric GARCH type models better fit the 

Sudanese exchange rate under the non-normal distribution than the normal distribution and improved the 

overall estimation for determining restricted variance than the GARCH model. The Ding, Granger, and 

Engle (DEG)-GARCH model assuming the student t- distribution {AIC = -7.844, Bayesian Information 

Criterion (BIC) = -7.665} was the best fit for the data. The model produced reliable forecasts and adequately 

estimated the Sudanese pound exchange rate volatility. Besides, the leverage effect in the series was a 

common stylised fact in most financial series. Overall, the few reviewed studies have a common agreement 

that asymmetric-GARCH models are better than symmetric-GARCH models. Thus, the current study 

applies asymmetric-GARCH models to exchange rate data. The following specific objectives guided the 

study: 

1) To fit asymmetric-GARCH type models (EGARCH, IGARCH, APARCH, GJR-GARCH, and 

TGARCH) to the Kenyan exchange rate data.  

2) To identify the best asymmetric-GARCH type model that best fits the Kenyan exchange rate data. 

3) To forecast the Kenyan exchange rate using the best asymmetric-GARCH type model. 

 

II. METHODOLOGY 

A. Research Design 

The study used descriptive research design. The descriptive research design explores the stylized 

properties of financial time series data which includes volatility clustering, negative kurtosis, and excess 

skewness. The features were determined by the use of data visualization, descriptive, and inferential 

statistics. 

B. Data Collection 

The analysis used monthly exchange rate data in Kenya from January 1993 to June 2021 as a convenience 

sample available during the study. The secondary data was obtained from the Central Bank of Kenya (CBK) 

website [20]. Kenya’s exchange rate is referenced to the US dollar.  The series was downloaded in October 

2021, and has 342 data points considered adequate for a time series analysis technique. The period is 
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suitable since the sample covers the period when Kenya was already on a flexible exchange rates regime. 

C. Data Analysis 

The R statistical software [21] was used to analyse the data. Preliminary analysis done included 

descriptive statistics, trend analysis, and stationarity test. The selected asymmetric GARCH models 

(GARCH, TGARCH, APARCH, GJR-GARCH, and EGARCH) were fitted to the stationary log-

differenced data based on the functions in the RUGARCH [22]. 

1) Fitting the Asymmetric-GARCH Type Models 

The conditional variance of the return series is expressed as a function of constant, past volatility, and 

past forecast variance in the generalised ARCH model [23], [24]. The maximum likelihood estimator (MLE) 

method was used to estimate parameters in the model. 

a) The GARCH Model 

The conditional variance for the generalised GARCH (p, q) model is defined in (1): 
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where 𝛽0 > 0,  𝛼𝑖 ≥ 0, 𝛽𝑗 > 0; 

𝑉2: is the restricted variance; 

𝜇2: Error term referred to as disturbance term; 

K is the order of the generalised terms, i.e., the amount of lagged 𝜇2 terms; 

S is the size of the ARCH terms, i.e., the amount of lagged 𝑉2 terms. 

Both 𝛽𝑣 and 𝛼𝑟 are greater than zero, and the component ∑ 𝛼𝑟
𝐾
𝑟=1 + ∑ 𝛽𝑣

𝑆
𝑣=1 < 1 to achieve stationary. 

Additionally, the restraints 𝛼𝑟 ≥ 0 and 𝛽𝑣 ≥ 0 ensures that 𝑉2is strictly positive [25]. 

b) The GARCH Model 

The exponential GARCH model with its leverage and asymmetry properties in its equation is defined 

with conditional variance written as in (2): 
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where 𝑉2 = the conditional variance; 

𝜇2 = Disturbance error term; 

K = the order of amount of lagged 𝜇2 terms; 

S= the order of the number of lagged 𝑉2 terms. 

The model is asymmetric in nature because the component, 
𝜇𝑡−𝑟

𝑉𝑡−𝑟 
, is included with coefficient, 𝛾𝑟. Since 

the constant is negative, positive returns shockwaves cause less volatility than negative return shocks when 

other factors remain constant. 

c) Glosten, Jagannathan and Runkle GARCH(GJR-GARCH) Model 

The GJR-GARCH variance equation is defined by (3). 
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where 𝛼 , 𝛽, 𝑎𝑛𝑑  𝛾  are model parameters.  

K and S are the lagged orders of the 𝛾 and 𝛿𝑡−𝑣
2  terms, 

𝐼 = Is a dummy variable, also known as the indicator function, and takes the value zero when the parameter 

𝛾𝑡−𝑟 is negative and one if it is positive. If 𝛾 is positive, negative shocks have more impact than positive 

shocks. The model parameters are assumed to be positive and that  
𝛼+𝛽+𝛾

2
< 1, if all leverage coefficient 

constants are zero, then the GJR-GARCH model becomes the GARCH model. 

d) Power GARCH (PGARCH) Model 

The PGARCH or APARCH (K, S) has the variance equation as expressed in (4): 
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where 𝜔 > 0, 𝛿 > 0, 𝛼𝑟 ≥ 0, −1 < 𝛾𝑟 < 1, 𝑟 = 1, … , 𝐾,   𝛽𝑣 ≥ 0, 𝑣 = 1, … , 𝑆,   𝛼  𝑎𝑛𝑑 𝛽  are the normal 

ARCH and generalised ARCH parameters, 𝛾𝑖  is the leverage effect parameter and 𝛿 is the parameter for the 

power term component. 

e) Threshold GARCH (TGARCH) Model 

The threshold GARCH model is an extension of the exponential GARCH and the GJR-GARCH model. 

Its conditional variance in (5) 
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where 𝜇𝑡−𝑟
(1)

 = max (𝑒𝑡, 0),  𝜇𝑡−𝑟
(2)
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  are the effects of the threshold. K and S 

are the lagged orders. 

f) Integrated GARCH (IGARCH) Model 

The IGARCH model is similar to the ARMA model and is a unit-root GARCH model. A key feature of 

the IGARCH model is that the effect of previous squared shocks  𝜋𝑡−𝑟 = 𝑎𝑡−𝑟
2 − 𝑉𝑡−𝑟

2   for r >0 on 𝑎𝑡
2 is 

persistent. A variance IGARCH (K, S) model is expressed in (6). 
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where  1 > 𝛽𝑟 > 0; 

𝑉2 = the conditional variance; 

K is the order of the number of lagged 𝑉𝑡−r
2  terms; 

S is the order of the number of lagged 𝑎𝑡−v
2  terms. 

2) Model Selection Criteria 

The model selection criteria examine whether the fitted model optimally balances the goodness-of-fit 

and parsimony. Several evaluation criteria have been developed to assess the model performance of 

competing models or orders. Some common criterion is the maximum likelihood ratio test of the models, 

where a model with the highest log-likelihood value is the best [26]. Suppose the competing models do not 

have equal parameters. In that case, the principle of parsimony applies, such that the best model minimises 

criteria such as the AIC, and BIC. The best fit model was determined based on parsimony (AIC, BIC, Log-

Likelihood criterion) and minimisation of prediction production errors (ME and RMAE).  The five metrics 

are estimated using (7) and (8) [27]. 

 

 𝐴𝐼𝐶 = −2 log(𝐿) + 2 log(𝑝 + 𝑞) (7) 

 

where 𝐿 indicates the likelihood of the data with a certain model, 𝑝 and 𝑞 indicate the lagged orders of AR 

and MA terms, respectively. 

 

 𝐵𝐼𝐶 =  − 2𝑙𝑜𝑔 (𝐿) +   2(𝑚)  (8) 

 

where n and m are the numbers of observations and parameters in the model, correspondingly, and log (L) 

is the log-likelihood. The best model is the one that minimizes the AIC or BIC while maximizing the log-

likelihood. 

3) Model Evaluation Criterion 

Clement [28] proposes that out-of-sample forecasting ability is the measure for choosing the best model 

to be adopted to determine the predictive ability of volatility models. The current study used two model 

selection criteria: the Mean Error (ME) and Root Mean Absolute Error (MAE). If 𝛿2
𝑡 and  𝛿2

𝑡̂ represents 

the actual and forecasted volatility/variance of a series at time 𝑡, then; MSE, which measures the average 

of the squared individual errors, is estimated using (9) [29]. 
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where; ℎ is the number of head steps, and s is the sample size. 

A model that minimises the MSE value is a better fit for a given data. RMSE is simply obtained by taking 

the square root of MSE and is estimated using (10). 
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(10) 

 

The best asymmetric GARCH model is the one that minimizes the ME and RMAE. 

4) Residual Diagnostics 

An adequate model for forecasting or, in this case, evaluation of volatility should have residuals similar 

to a series generated from white noise. The simplest way to examine this is to visualize the residuals in a 

time plot. A histogram superimposed with a density plot was also used to test if the normality assumption 

holds. For normally distributed residuals, the density curve should be bell-shaped. In addition, the residuals 

of a given best model must not be autocorrelated. The Ljung-Box (Q) statistic was employed to examine 

the presence of autocorrelation. The null hypothesis under this test is that there is no serial correlation. The 

insignificant Q statistic indicates the absence of serial correlation; hence the model fits the data well. 

Both symmetric and asymmetric curves differ by the leverage effect. Let 𝜀𝑡 be a measure of shocks; 

where a positive value of 𝜀𝑡 depicts a positive shock, and vice versa.  A standard GARCH model (symmetric) 

will have a news impact curve that is quadratic, that is, symmetric and centred around 𝜀𝑡−1 = 0 (that is; 

when there is no bad or good news). In that case, positive and non-positive shocks of the same size yield a 

similar magnitude of volatility. But conventionally, non-positive shocks can cause more volatility than 

positive shocks of the same magnitude. Thus, the GARCH model underestimates the degree of volatility 

arising from large negative or bad news/shocks. In the same logic, it overestimates the volatility arising 

from small positive shocks or good news [8]. To examine the tendencies, three diagnostic tests for volatility 

models: The Sign Bias Test (SBT), the Negative Size Bias Test (NSBT), and the Positive Size Bias Test 

(PSBT) are usually carried out. All three tests converge to the evaluation of the model misspecification. 

However, reference [8] described, the bias tests have different methodologies. The SBT augments an 

indicator function 𝑆𝑡−1
−  which assumes a rate of one if there is negative news (𝜀𝑡−1 < 0) or else zero. It 

examines whether positive and non-positive shocks affect volatility differently from the fitted model. The 

NSBT employs a dummy 𝑆𝑡−1
− 𝜀𝑡−1  . It examines if large negative shocks correlate with the volatility 

contrary to the fitted volatility model projection.  On the contrary, the PSBT uses the dummy variable 

𝑆𝑡−1
+ 𝜀𝑡−1; where 𝑆𝑡−1

+ = 1 − 𝑆𝑡−1
− 𝜀𝑡−1. Unlike the NBST, the PSBT examines how larger positive shocks 

can impact volatility differently from the forecast of the fitted conditional heteroscedastic model. 

Let 𝑣𝑡 be the normalized residuals at time t of the fitted volatility model 𝑣𝑡 =
𝑒𝑡

√ℎ𝑜
. The LM test statistic 

for 𝐻0: 𝛿𝑎 = 0  in any given asymmetric model entails testing the null hypothesis; of 𝐻0: 𝛿𝑎 = 0 in the 

auxiliary regression equation (11). 

 

 𝑣𝑡
2 = 𝑍 0𝑡𝛿 0 + 𝑍 𝑎𝑡𝛿 𝑎 + 𝜇𝑡 (11) 

 

where; 𝛿 0 is the 𝑘 × 1 direction of parameters of the null hypothesis; 𝑍 0𝑡 is the k x 1 vector of regressors 

under the null hypothesis; and 𝑍 𝑎𝑡 is the 𝑚 𝑥 1 direction of regressors not included in the model, with 

associated parameters, 𝛿 𝑎, and 𝜇𝑡 is the model residuals. For a perfect or adequate model, the predictors in 

(9) should be significant. Thus, the conditional heteroscedastic model is misspecified if the fitted model 

predicts the squared standardised residual. The model residuals should show no ARCH effects; otherwise, 

they must be modelled. The Lagrange Multiplier (LM) test is employed to test for the existence of ARCH, 

as was used in the study on each of the best fit models for both exchange rate and BOP. The LM is computed 

using (12). 

 𝜉𝐿𝑀 =  𝑇 × 𝑅2 (12) 

 

where; 𝑅2 is square of the multiple correlation coefficient of (12), and T is the sample size. The LM test 

statistic takes an asymptotic 𝜒2 distribution with m as the degrees of freedom, with m denoting the number 

of restricted parameters. In either case, the null hypothesis is that; there are no ARCH effects. If the resultant 

p-value associated with either of the statistics is less than 0.05, the null hypothesis will be rejected and vice 

versa. The regression equations used for evaluation of the SBT, the NSBT, and the PSBT are presented in 

(13) – (15), respectively. 

 

 𝑣𝑡
2 = 𝛼 + 𝛽 𝑆𝑡−1

− + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡 (13) 
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 𝑣𝑡
2 = 𝛼 + 𝛽 𝑆𝑡−1

− 𝜀𝑡−1 + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡 (14) 

 

 𝑣𝑡
2 = 𝛼 + 𝛽 𝑆𝑡−1

+ 𝜀𝑡−1 + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡 (15) 

 

where  𝛼 and 𝛽 are parameters of the model, 𝛽′ is a vector of parameters associated with the regressors not 

included in the model, and 𝑒𝑡 is a vector of model residuals.  The three tests are evaluated based on the t-

statistic associated with the coefficient in their respective equations. Alternatively, the three tests can be 

done jointly following the regression in (16).  

 

 𝑣𝑡
2 = 𝛼 + 𝛽1𝑆𝑡−1

− + 𝛽2𝑆𝑡−1
− 𝜀𝑡−1 + 𝛽3 𝑆𝑡−1

+ 𝜀𝑡−1 + 𝛽′ 𝑍𝑜𝑡
∗ + 𝑒𝑡 (16) 

 

The t-statistics proportions for 𝛽1, 𝛽2, and 𝛽3 correspondingly, sign bias, negative magnitude bias, and 

the positive bias test statistics.  It is an expectation that, if adequate volatility, then 𝛽1 = 𝛽1 = 𝛽1 = 0, 𝛽′ =

0; and hence 𝑒𝑡  is identically and independently distributed (𝑖. 𝑖. 𝑑). If coefficients are significant, the 

positive or negative external shocks affect the variance differently from the model’s predictions. On the 

contrary, there is no bias if the coefficients are insignificant. 

5) Forecasting 

The ultimate goal of time series modelling techniques is to make future forecasts. Both the in-sample 

predictions (observed) and out-sample predictions (unobserved) were estimated alongside the one standard 

deviation confidence band where the actual values are likely to lie. 12-step ahead forecasts from July 2021 

to June 2022 were made for each variable. 

III. RESULTS AND DISCUSSIONS 

A. Trend Analysis 

Fig. 1 shows Kenya's exchange rate data from January 1993 to June 2021. The figure shows an overall 

increasing trend with notable undulation over time. There was a sharp decline around 1992, 2007, and 2012, 

which can be associated with the usual electioneering period associated with election violence which 

decreases investor confidence, especially among foreigners. The long periods of exchange rate stability are 

seen when there is a smooth government transition. For instance, the periods 2003-2005; 2017- 2019 had a 

relatively stable exchange rate. However, the recent COVID 19 has seen a sharp appreciation in Kenya’s 

exchange rates. 

 

 
Fig. 1. Trend analysis of exchange rate data. 

 

B. Stationarity Test 

The use of non-stationary data in time series analysis has always been criticised since it leads to spurious 

results. In the current study, we employed the Augmented Dickey-Fuller (ADF) test [30] to evaluate the 

stationarity of the data.  The ADF test tests the hypothesis (H0) that data is not stationary versus an 

alternative hypothesis (H1) which states the data is stationary.  The results show that the data is stationary 

since the p-value is less than p-value at level, at a 5% level (ADF = -3.845, p = 0.044 > 0.05) (Table I). 

However, it has an upward trend. To obtain data that is stationary, the monthly first difference of the 

logarithms of the absolute series for exchange rate data was computed using the formula in (17). 

 

 𝐷. log (𝑋𝑡) = ln|𝑋𝑡| − ln |𝑋𝑡−1| (17) 
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TABLE I: ADF TEST FOR EXCHANGE RATE DATA 

Variable  Series ADF Statistic Lag Order p-value Comment 

Exchange rate 
At level -3.485 6 0.044 Stationary 

Log differenced -7.555 6 0.010 Stationary 

 

The resultant stationarity series are visualized in Fig. 2 

 
Fig. 2. Time plot of log differenced series for Kenya’s exchange rate data. 

C. Descriptive Statistics 

Table II shows the descriptive statistics and normality test of Kenya's exchange rate data and log-

differenced series over the study period. 

 
TABLE II: DESCRIPTIVE STATISTICS AND NORMALITY TEST 

Variable Series 

Descriptive Statistics Shapiro-Wilk test 

N Min Max Mean SD Skewness Kurtosis Statistic p-value 

Exchange rate 
At level 342 35.92 110.14 79.26 16.49 0.000 -0.599 0.967 0.000 

Log differenced 341 -0.151 0.274 0.0332 0.0332 2.432 24.841 0.7014 0.000 

 

The skewness statistic for the exchange rate data is close to zero, indicating that the data approximately 

follows a normal distribution.  The negative kurtosis (-0.599) suggests that the data is not heavy-tailed; 

instead, the outliers are less extreme than that of a normal distribution [31]. The low-value kurtosis statistic 

specifies that the series is slightly platykurtic. However, the log differenced series of the exchange rate data 

has more interesting properties associated with the stylised facts of the financial series. The series mean is 

close to zero and has excess kurtosis. As a result, the study proposed that the asymmetric GARCH model 

can be more appropriate.  One of the important features in fitting GARCH-type models is the normality 

assumption. As statistically quantified by Shapiro-Wilk's (SW) test indicates that all the series are not 

normally distributed (all p < 0.05).  The histograms in Fig. 3 indicate that the series slightly deviated from 

normal. 

 
Fig. 3. Histogram of log-differenced series of Kenya's exchange rate data. 

 

Given that the data doesn’t follow a standard distribution, mainly caused by the flatter tail than those of 

a normal distribution, it is necessary to use non-normal distributions which includes: the student t-

distribution (std), generalized error distribution ("ged"), and skewed student distribution ("sstd") or skewed 

normal distribution (snorm) [24], [32]. Given that the data slightly deviates from normal, the current study 

adopted the 𝑠𝑛𝑜𝑟𝑚 when fitting all the potential asymmetry GARCH models for the log-differenced series 

of Kenya's exchange rate data. 

D. Testing for ARCH Effects 

Since the GARCH type model is an extension of the ARCH class of model. The GARCH (p, q) model 

points towards the ARCH (r = q + p) model. Thus, the preliminary stage to fitting the model entails testing 

for the existence of ARCH effects. The Lagrange Multiplier (LM) was employed to examine the presence 

of ARCH on the squared residuals of the AR (p) model. The null hypothesis state that there is no presence 

of ARCH properties. The LM test results are shown in Table III. 

 
TABLE III: ARCH EFFECTS TEST FOR THE LOG-DIFFERENCED SERIES OF EXCHANGE RATE DATA 

Variable  N Chi-square Statistic Degrees of freedom p-value 

Log-differenced exchange rate 342 73.86 12 0.000 
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Regarding the log-differenced series of exchange rates, the resultant LM statistic at 12 degrees of 

freedom is 73.86 with an associated p-value less than 0.01. Therefore, the null hypothesis should not be 

accepted (rejected) at a 1% level of significance, indicating strong evidence of the presence of ARCH 

effects. The LM was also applied to test for the existence of the ARCH effect on the squared errors of an 

AR (p) process. The findings justify the use of the GARCH-type models to model the series. The 

generalized ARCH (GARCH) [24] is an extension of the ARCH family, where  𝜎𝑡
2 It depends on the lags 

and lags of the squared error term. The GARCH model is an Autoregressive Distributed Lag (ADL) (p, q) 

model hence likely to provide more parsimonious parameterisations than the ARCH model. 

E. Model Selection and Specification 

1) Mean Equation Selection 

The mean equation in asymmetric GARCH models is an ARMA process. The mean equation selection 

for the log differenced series of exchange rates data is discussed below.  One of the visualisation tools that 

help examine the presence of autocorrelation in time series data is ACF; as shown in Fig. 4, there is a 

significant autocorrelation coefficient with some seasonality, which repeats itself after some interval k. 

 

 
Fig. 4. ACF of log differenced series of Kenya’s exchange rate data. 

 

Fig. 5 shows the log differenced series of exchange rate data alongside its decomposed time-series 

properties and ascertains that the series has seasonality. 
 

 
Fig. 5. Time series decomposition of log-differenced series of exchange rates. 
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One of the notable challenges with modelling with the 𝑢𝑔𝑎𝑟𝑐ℎ𝑠𝑝𝑒𝑐 function in the Rugarch package in 

R [22] is that it does not account for the seasonality aspect in the ARMA mean equation model.  Based on 

the minimisation of AIC, and BIC values the 𝑎𝑢𝑡𝑜. 𝑎𝑟𝑖𝑚𝑎 function in the 𝑓𝑝𝑝2 package in R suggests that 

ARIMA (4,0,0) (2,0,0) [12] with non-zero mean could be the best Seasonal ARIMA (SARIMA) model 

(AIC = -1385.34, BIC = -1354.68). The model shows that the mean equation model should capture 

seasonality. Yet, the RUGARCH package does not account for seasonality in the asymmetric modelling. 

The seasonal argument was set to False to account for seasonality assuming the series has no seasonal 

component to incorporate the Fourier terms in the model [33]. The resultant models incorporate the ARMA 

and Fourier terms as external regressors. K was specified as from 1 to 6 since K should not be greater than 

period/2. Given that the periodicity of the series is 12; 1 ≤ 𝑘 < 6. All the ks favoured ARIMA (3,0,0). 

Therefore, the mean equation in the ugarchspec function in the RUGARCH package will be ARMA (3,0). 

Besides, the best fit GARCH had the parameters p and q as one. The optimal ARMA (3,0) is akin to AR (3) 

process, indicating autocorrelation in the series. 

2) GARCH Model Selection 

Table IV presents possible ARMA (3, 0) – APARCH (1, 1) models for the log-differenced series of 

exchange rate data alongside their evaluation metrics (AIC and BIC). The optimal variance equation based 

on the minimization of the two metrics was APARCH (1,1) - ARMA (3,0) model with a skewed normal 

distribution (AIC = -4.6871, BIC = -4.5860). 
 

TABLE IV: MODEL SELECTION FOR THE LOG-DIFFERENCED SERIES OF EXCHANGE RATE DATA 

GARCH Model Mean Model AIC BIC LL ME RMAE 

EGARCH (1,1) ARMA (3,0) -4.4492 -4.3593 766.5814 -0.000603 0.130427 

IGARCH (1,1) ARMA (3,0) -4.6394 -4.5720 797.0147 0.0034046 0.133446 

APARCH (1,1) ARMA (3,0) -4.6871 -4.5860 808.1503 0.0019585 0.1340027 

TGARCH (1,1) ARMA (3,0) -4.1037 -4.0138 707.6726 -0.0054697 0.1422132 

GJR-GARCH (1,1) ARMA (3,0) -4.6285 -4.5386 797.1539 0.00288466 0.1290308 

 

The findings differ from those of Petrică and Stancu [18], who established that AR (3) - EGARCH (2, 1) 

was the best model fit to the best model for estimating daily returns of EUR/RON exchange rate.  While 

the mean equation is similar, the GARCH model is different. The findings can be associated with 

methodological disparity. The current study specified a skewed normal distribution, unlike Petrică and 

Stancu [18], who preferred students' t-distribution (AIC ≈ 0.7880). Apart from using a different reference 

currency, the frequency of the series was high (daily EUR/RON exchange rates) and spanned 4th January 

1999 to 13th June 2016. Unlike their study, the current study used monthly KES/USD exchange rates which 

portrayed different time-series properties. In the current study, ARMA (3,0) - APARCH (1,1) is the best fit 

model since APARCH of Ding, Grange, and Engle [34] accounts for leverage and the Taylor effect [35], 

which postulates that the observed that the sample autocorrelation of absolute returns was larger than that 

of squared returns. 

Table V summarizes the optimal parameters for the best model ARMA (3,0). - APARCH (1,1). While 

determining the optimal order, 𝜔  was fixed to 0.000020 and was determined based on automatic 

optimization of the parameter based on the garchFit () function in the Rugarch package [22].  From the 

results, 𝜙3 of the AR (3) mean equation process is -0.151835 and is statistically significant (p = 0.000369), 

indicating a negative autocorrelation. Aggregately, the three AR parameters suggest that the exchange rate 

is characterized mainly by trends, as indicated in the decomposition of the series in Fig. 5. As shown in Fig. 

4, the log differenced series of exchange rate data has a decreasing trend component. 
 

TABLE V: OPTIMAL PARAMETERS 

Parameter  Estimate Std. Error t value p-value 

mu       0.001532 0.00089 1.710710 0.087135 

AR1       0.072017 0.076051 0.946951 0.343664 

AR2 -0.043664 0.065509 -0.666541 0.505065 

AR3 -0.151835 0.042632 -3.561516 0.000369 

Omega (fixed)  0.000020      

alpha1 0.649600   0.133069 4.881666 0.000001 

beta1    0.206667 0.077380 2.670788 0.007567 

eta11    -0.000005 0.071421 -0.000065 0.999948 

Lambda 2.475383 0.051397 48.162375 0.000000 

skew      1.128859 0.051947 21.731141 0.000000 

Note. restricted Variance Dynamics: GARCH Model: APARCH (1,1); Mean Model: ARMA (3,0); Distribution: snorm 

 

Algebraically, the square residuals models can be represented as follows: 

 

𝜎𝑡
2 = 0.000020 + 0.0720𝑋𝑡−1 − 0.0437𝑋𝑡−2 − 0.15184𝑋𝑡−3 + 0.6496 |𝜖𝑡−1| + 0.2067 𝜎𝑡−1

2

− 0.000005𝑣𝑗1 + 2.47538 𝜖𝑡−1 
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The GARCH parameters were approximated to be 𝛼1 = 0.6496, 𝛽1 =0.2067, 𝜂11 = −0.000005 , λ =
2.4754. A key stylized feature of financial time series data that GARCH models capture is volatility 

clustering. The persistence parameter captures the feature 𝑃̂. For the APARCH model, the persistence 

model is estimated using (18). 

 

𝑃̅  = ∑ 𝛽𝑗

𝑃

𝑗=1

 +  ∑ 𝛼𝑗𝑘𝑗

𝑞

𝑘=1

 

 

(18) 

 

Given that 𝛼1 and 𝛽1 is statistically significant at a 1% level (p < 0.01), there is a persistent volatility 

clustering in the series. Regarding volatility persistence, the research findings revealed a small value of the 

persistence parameter (𝛽) hence a rapid decrease of the rises in the conditional variance due to shocks. 

Besides, the significance of λ = 2.4754 > 0 (SE = 0.0514; p < 0.01) suggest that there is a statistically 

significant leverage effect. That is the null hypothesis (H0) of no leverage effect (𝐻0: 𝜆 =  0) was rejected 

at a 1% significance level. The leverage effect is a common feature in financial time series, where large 

negative past observations of 𝛼𝑡  increases volatility more than positive past observations of a similar 

magnitude.  The non-zero leverage parameters ascertain the presence of asymmetry in the exchange rate 

series. Conventionally, negative leverage parameters indicate an asymmetric response for positive returns 

in the conditional variance equation. In contrast, positive leverage parameters indicate that negative shocks 

or bad news increase volatility [18]. Thus, the resultant positive coefficient of 𝜆 (positive asymmetry) 

shows the absence of leverage result in the exchange rate series. Instead, volatility is positively correlated 

with the series. In the current finding, positive shocks on the exchange rate generate higher volatility than 

negative shocks of equal magnitude; other factors are kept constant. 

Despite inconsistent results with theory, there is always possible that empirical evidence deviates from 

the theoretical perspective. For instance, while modelling volatility or return series Nigerian, Onwukwe, 

Bassey and Isaac [36] found a positive coefficient of 𝜆 in the UBA, Mobil, and Unilever returns with returns 

for the Guinness stock prices only indicating the presence of leverage effect.  In another study, Benedict 

[37] demonstrated the absence of the leverage effect in Ghana’s monthly inflation. The study of Nwoye 

[38] also revealed the existence of volatility clustering, leverage effect, and asymmetric effect in the 

Exchange rate of Nigeria naira against the USD spanning January 1999 to December 2012, though using 

the EGARCH (2,2) model as the best model for the data. Petrică and Stancu [18] also found the presence 

of positive and negative asymmetry in the returns of EUR/RON exchange rate while using the AR (3) - 

EGARCH (2, 1) model. 

Pahlavani and Roshan [39] also established a positive leverage effect in the exchange rate of Iran 

(IRR/USD) using that ARIMA (7,2), (12) – EGARCH (2,1) was the best fit model. Contrarily, Thorlie, 

Song, Wang, and Amin [40] found negative asymmetry in the Sierra Leone/USA dollars exchange rate 

returns computed from the monthly data from January 2004 to December 2013 while using asymmetric 

GJR-GARCH models. In Kenya, Omari, Mwita, and Waititu [41] found asymmetry and the presence of a 

negative leverage effect in Kenya’s daily exchange rates spanning 3rd January 2003 to 31st December 2015 

while using the AR (2)-E-GARCH (1, 1) and AR (2)-GJR-GARCH (1, 1).  The findings vary due to the 

different time frames used to estimate volatility. 

F. Residual Diagnostics 

The current study tested whether residuals from the best fit model for the exchange rate data meet the 

normality assumption, show no serial association, and have no ARCH properties. The key aim is to examine 

whether the model minimizes the prediction errors. Fig. 6 shows the graph of the residuals from the ARMA 

(3,0)- APARCH (1,1) alongside the histogram. It shows clear evidence that the residuals {𝜖𝑡} mimics a 

Gaussian white noise.  

Besides, there are few significant autocorrelation coefficients in the resultant model residuals, as depicted 

in Fig. 7. 

In a nutshell, the residuals from the fitted model are purely random; hence the model is adequate. 

However, randomness is not the only necessary condition that must be satisfied.  The residuals of an 

adequate model should not be autocorrelated. The Ljung–Box test was applied to the model residuals and 

the squared errors of the best fit ARMA (3,0) -APARCH (1,1) model for Kenya’s exchange rate series. The 

null hypothesis state that there is no serial association. In both cases, the Ljung–Box tests results showed 

significant results (all p – values < 0.05) for all lags, evidence of the presence of serial correlation (Table 

VI).  However, as shown by the ACF plot in Fig. 7, there are few significant autocorrelation coefficients in 

the resultant model residuals hence has no serious implication in the fitted GARCH model. 
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Fig. 6. (a): Residuals plot from ARMA (3,0) -APARCH (1,1) model; (b):  the empirical density of standardized residuals. 

 

 
Fig. 7. ACF plot of residuals from ARMA (3,0) -APARCH (1,1) model. 

 
TABLE VI: WEIGHTED LJUNG-BOX TEST 

Level 

Standardized residuals Standardized squared residuals 

statistic p-value statistic p-value 

Lag [1] 14.81 0.000 17.50 0.000 

Lag[2×(p+q)+(p+q)-1][8] 24.30 0.000 17.87 0.000 

Lag[4×(p+q)+(p+q)-1][14]  29.29 0.000 19.20 0.000 

Note. degrees of freedom = 3 

 

Furthermore, it is also an expectation that ARCH-LM test results are non-significant. The LM test 

examines the null hypothesis that “there are no ARCH effects.” The results in Table VII indicate the absence 

of ARCH effects in the model residuals (all p-values > 0.05). Thus, the finding indicates that the fitted 

ARCH process was adequate. 

 
TABLE VII: WEIGHTED ARCH LM TESTS 

Lag order Statistic Shape Scale P-Value 

ARCH Lag [3] 0.2487 0.500 2.000 0.6180 

ARCH Lag [5] 0.5832 1.440 1.667 0.8588 

ARCH Lag [7] 0.8014 2.315 1.543 0.9436 
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The SBT, the NSBT, and the PSBT are usually carried out to evaluate the volatility model 

misspecification. Overall, the SB test evaluates the presence of leverage effects in the standardized residuals 

(to address the possibility of model misspecification) by regressing the squared standardized residuals on 

lagged negative and positive shocks [8]. Thus, it tests whether positive and negative shocks affect volatility 

differently from the fitted conditional heteroscedastic model. The NSBT examines if large negative shocks 

correlate with the volatility contrary to the fitted volatility model projection.  On the contrary, the PSBT 

examines how larger positive shocks are associated with large biases in forecasted volatility. Hypothetically, 

the residuals are said to be identically and independently distributed (𝑖. 𝑖. 𝑑) because the model parameters 

({𝛽𝑖  , 𝛽′) estimated using (13) – (16) are insignificant; hence the model is correctly specified. The fitted 

model SB and NSB tests are non-significant. However, the PSB is significant and, therefore, the joint effect 

at a 1% significance level (all p-values < 0.01) (Table VIII). Thus, the squared residuals' significant positive 

reaction to shocks. Yet, the APARCH model has been designed to alleviate such biases [22].  

 
TABLE VIII: WEIGHTED ARCH LM TESTS 

Test t-value p-value Significance 

Sign Bias            0.6441 0.052 Not Significant 

Negative Sign Bias   0.1416 0.089 Not Significant 

Positive Sign Bias   5.0158 0.000 Significant 

Joint Effect         26.6334 0.000 Significant 

 

G. Estimating Volatilities 

While the ARMA (3,0)-APARCH (1,1) model to the log differenced exchange rate data fails the positive 

sign bias test, the model is adequately supported by the ARCH-LM test; hence can describe the volatility 

trends of the series. The in-sample volatilities were estimated as graphically presented in Fig. 8. Overall, 

Kenya’s exchange rate volatility appears to be converging over time, indicating sustained exchange rate 

stability.  The GARCH 𝛼 and 𝛽 parameters fitted ARMA (3,0) -APARCH (1,1) model were statistically 

significant at a 1% level (p < 0.01), indicating a persistent volatility clustering in the series with rapid 

decelerating growth over time. The first period depicts some notable occasions where volatility was high. 

The periods between 1993/94, 1995-1997, 2001/02, 2005/06, 2008/09, 2011-2013, and 2015/17 

experienced high volatility and are associated with the electioneering period, which causes an incentive to 

both foreign and domestic investors due to uncertainty of the election outcome and likelihood of associated 

violence and disruption of business activities as witnessed in the aftermath of the 2007 elections. Besides, 

the higher volatility during 2008/09 can also be associated with the global financial crisis. The recent 

COVID-19 has also seen a sudden spike in the exchange rate volatility during 2020 (Fig. 8). 

 

 
Fig. 8. Estimated exchange rate Volatilities by ARIMA (3,0)-APARCH (1,1). 

 

H. Forecasting 

The ultimate in time series modelling is to make forecasts. In-sample and out-sample estimates of the 

exchange rate log differenced series were fisted using the ARMA (3,0)-APARCH (1,1) model having 

satisfied the model adequacy test. First, an in-sample examination was evaluated where the actual values 
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were superimposed with the estimated one standard deviation from the ARMA (3,0)-APARCH (1,1) model 

(Fig. 9). The confidence bands portray a similar series’ pattern over time, providing reliable future forecasts. 

 

 
Fig. 9. Actual exchange rate values superimposed with one standard deviation confidence band estimated from ARMA (3,0)-

APARCH (1,1). 

 

Fig. 10 plots Kenya's log differenced exchange rates data from Jan 1993 to June 2021 with a 12-month 

step ahead of July 2021 to June 2022. The 99% confidence limits for the forecasts to account for volatility 

are included. 

 

 
Fig. 10. Log differenced exchange rates (Jan 1992 – June 2021) with a 12-month step ahead forecast with unconditional 1-sigma 

confidence bands. 

 

The model predicts Kenya's exchange rate to remain relatively constant from July 2021 to June 2022. 

However, the volatility is increasing over time, as shown by the funnelled shape confident yellow band 

forecast limits widening out (Fig. 10) due to increasing or diverging conditional standard deviation (𝜎) over 

time (Table IX). Thus, while the exchange rate can be somewhat stable and the diverging prediction 

intervals indicate that it is susceptible to future external shocks, which can either continue to weaken or 

strengthen it. 
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TABLE IX: MODEL FORECAST 

Forecast Period Forecasted Series 

T+1 July 2021 0.004329 

T+2 August 2021 0.002280 

T+3 September 2021 0.001330 

T+4 October 2021 0.001060 

T+5 November 2021 0.001393 

T+6 December 2021 0.001573 

T+7 January 2022 0.001613 

T+8 February 2022 0.001557 

T+9 March 2022 0.001524 

T+10 April 2022 0.001518 

T+11 May 2022 0.001527 

T+12 June 2022 0.001533 

Note. Forecast: T0=Jun 2021. 

 

IV. CONCLUSION 

The predicted volatilities were captured and are consistent with the shifts in internal and external 

structural adjustments or shocks. For instance, concerning Exchange rates, volatility was high during the 

election periods. The recurrent election period in Kenya is a disincentive to investors due to uncertainty 

about the outcome of the elections. Thus, the electioneering period is linked to higher exchange rate 

volatility. Operating under the free-float exchange rate, Kenya's exchange rate is susceptible to global 

economic shocks such as the 2008/09 global financial crisis. The recent COVID-19 has also seen a sudden 

spike in the exchange rate volatility during 2020. While the exchange rate model will remain stable over 

the next 12 months, its volatility increases over time. The model's prediction intervals indicate a diverging 

uncertainty in exchange rates over the next year, signifying a long-run depreciation trend. Besides, the low 

order is consistent with the stylized fact that economic or financial series are influenced by recent past 

shocks rather than distant past shocks. 
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