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Abstract — In this paper an enumeration method to find the number of triangles in the zero-
divisor Cayley graph 𝑮(𝒁𝒏, 𝑫𝟎), associated with the ring (𝒁𝒏, ⨁,⨀), 𝒏 ≥ 𝟏, an integer and its 
subset 𝑫𝟎 of zero-divisors is presented. Further it is shown that this graph is Hamiltonian, not 
bipartite and Eulerian, when 𝒏 is odd. 
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I. INTRODUCTION  

Reference [1] introduced the concept of congruence in Graph theory and thus paved the way for the 
emergence of a new class of graphs, namely, Arithmetic graphs. Reference [2], and [3], [4] and others 
studied the Cayley graphs associated with certain arithmetic functions. Reference [5] introduced Cayley 
graphs associated with the arithmetical functions, namely, the Euler totient function φ(𝑛), the quadratic 
residues modulo a prime 𝑝 and the divisor function 𝑑(𝑛), 𝑛 ≥ 1, an integer and obtained various properties 
of these graphs. Later [6]-[8], studied various domination parameters and cycle structures of these graphs.  

References [9]-[13], and others studied the zero-divisor graphs of commutative rings. Given a 
commutative ring 𝑅 with identity, they defined the zero-divisor graph Γ(R) as the graph, whose vertex set 
is the set 𝑍(𝑅)∗, the set of nonzero zero-divisors of 𝑅 and the edge set is the set of all ordered pairs (𝑥, 𝑦) 
of elements 𝑥, 𝑦	 ∈ 𝑍(𝑅)∗, such that 𝑥𝑦 = 0 and studied the connectedness, the girth, the diameter, the 
automorphism of Γ(R) and other properties under conditions on the ring 𝑅. In [14]-[16], the authors 
introduced Cayley graphs associated with the set of  zero-divisors of a ring (	𝑅, +, ⋅) and studied these 
graphs, with particular reference to the ring (𝑍", ⊕, ⊙) of residue classes modulo 𝑛 ≥ 1, an integer and 
studied their basic properties, vertex domination, girth, diameter, and other concepts.  

Consider the ring (𝑍", ⨁,⊙) of integers modulo 𝑛, 𝑛 ≥ 1, an integer, which is a commutative ring with 
unity. In [15], it is established that the set 𝐷# of nonzero zero-divisors in the ring (𝑍", ⨁,⊙) is a symmetric 
subset of the group (𝑍", ⨁) and the zero-divisor  Cayley graph 𝐺(𝑍", 𝐷#) is the graph, whose vertex set is 
𝑍" and the edge set is the set of ordered pairs (𝑢, 𝑣)such that 𝑢, 𝑣 ∈ 𝑍" and either 𝑢 − 𝑣 ∈ 𝐷# or 𝑣 − 𝑢 ∈
𝐷#. This graph is (𝑛 − 𝜑(𝑛) − 1) − regular and its size is "

$
(𝑛 − 𝜑(𝑛) − 1). Further 𝐺(𝑍", 𝐷#) contains 

(i) only isolated vertices, if 𝑛 is a prime (Lemma 2.10, [15]), (ii) 𝑝 disjoint complete components, if             
𝑛 = 𝑝% , 𝑝, a prime and 𝑟 > 1, an integer (Theorem 3.7, [15]), (iii) it is a connected graph, if  𝑛 > 1, an 
integer, which is not a power of a single prime (Theorem 4.4, [15]). The terminology and notions that are 
used in this paper can be found in [17] for graph theory, [18] for algebra and [19] for number theory. 
The graphs 𝐺(𝑍&, 𝐷#), 𝐺(𝑍', 𝐷#) and 𝐺(𝑍($, 𝐷#) are given below: 

 
Fig. 1. The graphs of  𝐺(𝑍!, 𝐷"), 𝐺(𝑍#, 𝐷") and 𝐺(𝑍$%, 𝐷") 
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II. ENUMERATION OF TRIANGLES IN A ZERO-DIVISOR CAYLEY GRAPH 

In a graph a 3-cycle is called a triangle and the triangle formed by the distinct vertices 𝑎, 𝑏, 𝑐 is denoted 
by (𝑎, 𝑏, 𝑐). In the graph 𝐺(𝑍", 𝐷#), the triangle E0F, 𝑎F, 𝑏FG is called a basic triangle and it is denoted by ∆)*,,* . 

Lemma 2.1: The number of distinct basic triangles in the graph 𝐺(𝑍", 𝐷#) is  (
$
∑ |𝐷# ∩ (𝑎F + 𝐷#)|)*∈.! .	 

Proof: Let  𝑎F ∈ 𝐷# and let 𝑏F ∈ 𝑍". Then E0F, 𝑎F, 𝑏FG is a basic triangle 
 ⇔ 𝑎F − 0F ∈ 𝐷#, 𝑏F − 0F ∈ 𝐷# and 𝑏F − 𝑎F ∈ 𝐷# 
 ⇔ 𝑎F, 𝑏F, 𝑏F − 𝑎F ∈ 𝐷# 
       ⇔ 𝑎F, 𝑏F ∈ 𝐷# and 𝑏F ∈ 𝑎F + 𝐷# 
 ⇔ 𝑏F ∈ 𝐷# ∩ (𝑎F + 𝐷#). 
 Thus, for 𝑎F ∈ 𝐷#, the number of distinct basic triangles in the graph 𝐺(𝑍", 𝐷#) is  |𝐷# ∩ (𝑎F + 𝐷#)|. 

However by the definition of the adjacency in 𝐺(𝑍", 𝐷#), the triangles ∆)*,,*  and  ∆,*,)*   represent the same 
basic triangle. So the number of distinct basic triangles in the graph 𝐺(𝑍", 𝐷#) is: 

 
 (
$
∑ |𝐷# ∩ (𝑎F + 𝐷#)|)*∈.! .        	∎	

	
Example 2.2: The basic triangles of the zero-divisor Cayley graph 𝐺(𝑍($, 𝐷#) are enumerated below. 

Here  𝐷# = {2F, 3F, 4F, 6F, 8F, 9F, 10FFFF}. 

 
Fig. 2. The graph	𝐺(𝑍$%, 𝐷"). 

 
TABLE I: ENUMERATION OF BASIC TRIANGLES OF 𝐺(𝑍($, 𝐷#) 

𝑎) 𝑎)+𝐷" 𝐷" ∩ (𝑎) + 𝐷") Basic Tringles 
2)  -4), 5), 6), 8), 10)))), 11)))), 0)4 {4), 6), 8), 10))))} (0), 2), 4)),(0), 2), 6)),(0), 2), 8)),(0), 2), 10))))) 
3) -5), 6), 7), 9), 11)))), 0), 1)4 {6), 9)} (0), 3), 6)) , (0), 3), 9)) 
4) {6), 7), 8), 10)))), 0), 1), 2)} {2), 6), 8), 10))))} (0), 4), 2)),(0), 4), 6)), (0), 4), 8)), (0), 4), 10))))) 
6) {8), 9), 10)))), 0), 2), 3), 4)} {2), 3), 4), 8), 9), 10))))} (0), 6), 2)),    (0), 6), 4)), (0), 6), 8)) , (0), 6), 10))))) 
8) -10)))), 11)))), 0), 2), 4), 5), 6)4 {2), 4), 6), 10))))} (0), 8), 2)), (0), 8), 4))(0), 8), 6)), (0), 8), 10))))) 
9) -11)))), 0), 1), 3), 5), 6), 7)4 {3), 6)} (0), 9), 3)), (0), 9), 6)) 
10)))) {0), 1), 2), 4), 6), 11)))), 8)} {2), 4), 6), 8)} (0), 10)))), 2)), (0), 10)))), 4))(0), 10)))), 8)) 

 
Since ∆)*,,* 	= ∆,*,)*  , for 𝑎F, 𝑏F ∈ 𝐷#, the distinct basic triangles of the graph 𝐺(𝑍($, 𝐷#) are ∆$/,0/, ∆$/,1/, ∆$/,2/,

∆$/,(#****, ∆3/,1/, ∆3/,'* , ∆0/,1/, ∆0/,2/, ∆0/,(#****, ∆1/,2/, ∆1/,(#**** and ∆2/,(#****, which are represented by the thick lines in the 
graph 𝐺(𝑍($, 𝐷#) and the extracted portion of the graph containing,  the basic triangles is given in the Fig. 
4. 

 
Fig. 3. The graph 𝐺(𝑍$%, 𝐷"). 
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Fig. 4. The basic triangles of 𝐺(𝑍$%, 𝐷"). 

 
The following theorem gives a formula for the total number of distinct basic triangles in  the graph 

𝐺(𝑍", 𝐷#). 
Theorem 2.3: The number of distinct triangles in the graph 𝐺(𝑍", 𝐷#) is:  
 
(
1
|𝑍"| ∑ |𝐷# ∩ (𝑎F + 𝐷#)|)*∈.! . 

 
Proof: The graph 𝐺(𝑍", 𝐷#), being a Cayley graph, it is vertex symmetric. Further, for any 𝑔̅ ∈

𝐺(𝑍", 𝐷#), the mapping: 𝐺(𝑍", 𝐷#) → 𝐺(𝑍", 𝐷#), given by 𝜃(𝑥̅) = 𝑔̅ + 𝑥̅,	for all 𝐺(𝑍", 𝐷#), is an 
automorphism of 𝐺(𝑍", 𝐷#) and 𝜃(0F) = 𝑔̅ + 0F = 𝑔̅. Since an automorphism preserves incidence, it takes 
adjacent vertices into adjacent vertices and non-adjacent vertices into non-adjacent vertices and the basic 
triangle E0F, 𝑎F, 𝑏FG is taken into the triangle E𝑔̅, 𝑔̅ + 𝑎F, 𝑔̅ + 𝑏FG under the automorphism 𝜃. Thus for each 𝑔̅ ∈
𝐺, the number of triangles of the form (𝑔̅, 𝑥̅, 𝑦F) is also (

$
∑ |𝐷# ∩ (𝑎F + 𝐷#)|)*∈.!  and the total number of 

triangles in 𝐺(𝑍", 𝐷#) is given by (
$
|𝑍"| ∑ |𝐷# ∩ (𝑎F + 𝐷#)|)*∈.! .  

However in the above enumeration each triangle in 𝐺(𝑍", 𝐷#) is counted thrice, namely, once by each of 
its three vertices. So the total number of distinct triangles in 𝐺(𝑍", 𝐷#) is:  

 
(
1
|𝑍"| ∑ |𝐷# ∩ (𝑎F + 𝐷#)|)*∈.! .        ∎ 

 
Example 2.4: For the graph 𝐺(𝑍1, 𝐷#),  𝑍1 = {0F, 1F, 2F, 3F, 4F, 5\ } and 𝐷# = {2F, 3F, 4F}.  
The sets 𝑎F + 𝐷#, 𝐷# ∩ (𝑎F + 𝐷#) and |𝐷# ∩ (𝑎F + 𝐷#)| are given in the Table II. 
 

TABLE II: ENUMERATION OF DISTINCT TRIANGLES OF 𝐺(𝑍1, 𝐷#) 
𝑎)         𝑎) +𝐷" 𝐷" ∩ (𝑎) + 𝐷") |𝐷" ∩ (𝑎) + 𝐷")| 
			2) -4), 5), 0)4 {4)} 1 
			3) 								-5), 0), 1)4 {∅} 0 
4) {0), 1), 2)} {2)} 1 

 
Hence 𝐺(𝑍1, 𝐷#) contains (

1
	× 6|1 + 0 + 1| = 2  distinct triangles, which are given below. 

     
Fig. 5. The graph 𝐺(𝑍&, 𝐷") and its triangles.  

 
Example 2.5: Consider the zero-divisor Cayley graph 𝐺(𝑍($, 𝐷#). Here  
𝑍($ = ^0F, 1F, 2F, 3F, 4F, 5F, 6F, 7F, 8F, 9F, 10FFFF, 11FFFF` and 𝐷# =	 {2F, 3F, 4F, 6F, 8F, 9F, 10FFFF, }.  
The sets 𝑎F + 𝐷#, 𝐷# ∩ (𝑎F + 𝐷#)	and	|𝐷# ∩ (𝑎F + 𝐷#)| are given in the Table III. 
 

TABLE III: ENUMERATION OF DISTINCT TRIANGLES OF  𝐺(𝑍$%, 𝐷") 
 
 

𝑎) 𝑎) +𝐷" 𝐷" ∩ (𝑎) + 𝐷") |𝐷" ∩ (𝑎) + 𝐷")| 
2) -4), 5), 6), 8), 10)))), 11)))), 0)4 {4), 6), 8), 10))))} 4 
3) -5), 6), 7), 9), 11)))), 0), 1)4 {6), 9)} 2 
4) {6), 7), 8), 10)))), 1), 2)} {2), 6), 8), 10))))} 4 
6) {8), 9), 10)))), 0), 2), 4)} {2), 3), 4), 8), 9), 10))))} 6 
8) -10)))), 11)))), 0), 2), 4), 5), 6)4 {2), 4), 6), 10)))), } 4 
9) -11)))), 0), 1), 3), 5), 6), 7)4 {3), 6)} 2 
10)))) {0), 1), 2), 4), 6), 7), 8)} {2), 4), 6), 8)} 4 
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Hence the number 𝑇(𝐺(𝑍($, 𝐷#)) of distinct triangles of 𝐺(𝑍", 𝐷#) is given by 

𝑇(𝐺(𝑍($, 𝐷#)) =
1
6
|𝑍"| e |𝐷# ∩ (𝑎F + 𝐷#)|

)*∈.!

=
12
6
|4 + 2 + 4 + 6 + 4 + 2 + 4| = 2(26) = 52. 

These 52 distinct triangles of  𝐺(𝑍($, 𝐷#) are given below:   
(0F, 2F, 4F), (0F, 2F, 6F), (0F, 2F, 8F), (0F, 2F, 10FFFF), (0F, 3F, 6F), (0F, 3F, 9F), (0F, 4F, 6F), (0F, 4F, 8F), (0F, 4F, 10FFFF), (0F, 6F, 8F), (0F, 6F, 9F), 

(0F, 6F, 10FFFF), (0F, 8F, 10FFFF), E1F, 3F, 5FG, (1F, 3F, 7F), (1F, 3F, 9F), (1F, 3F, 11FFFF), (1F, 4F, 7F), (1F, 4F, 10FFFF), E1F, 5F, 7FG, E1F, 5F, 9FG, 
E1F, 5F, 11FFFFG, (1F, 7F, 9F), (1F, 7F, 10FFFF), (1F, 7F, 11FFFF), (1F, 9F, 11FFFF), (2F, 4F, 6F)(2F, 4F, 8F), (2F, 4F, 10FFFF), E2F, 5F, 8FG, E2F, 5F, 11FFFFG, 
(2F, 6F, 8F), (2F, 6F, 10FFFF), (2F, 8F, 10FFFF), (2F, 8F, 11FFFF), E3F, 5F, 7FG, E3F, 5F, 9FG, E3F, 5F, 11FFFFG, (3F, 6F, 9F), (3F, 7F, 9F), (3F, 7F, 11FFFF), 
(3F, 9F, 11FFFF), (4F, 6F, 8F), (4F, 6F, 10FFFF), (4F, 7F, 10FFFF), (4F, 8F, 10FFFF), E5F, 7F, 9FG, E5F, 7F, 11FFFFG, E5F, 8F, 11FFFFG, E5F, 9F, 11FFFFG, (6F, 8F, 10FFFF), 
(7F, 9F, 11FFFF). 
 

III. HAMILTONIAN PROPERTY OF THE ZERO-DIVISOR CAYLEY GRAPH 𝐺(𝑍", 𝐷#) 

A Hamilton cycle of 𝐺 is a cycle that contains every vertex of 𝐺 exactly once. A graph is called 
Hamiltonian if it contains a Hamilton cycle. 

Theorem 3.1: If 𝑛 > 1,	be an integer, not a power of a single prime, then the graph 𝐺(𝑍", 𝐷#) is 
connected and Hamiltonian.  

Proof: Let 𝑛 > 1	be an integer, which is not a power of a single prime. By the Theorem 4.4, of [15], the 
graph 𝐺(𝑍", 𝐷#) is connected. The vertex set 𝑉 of 𝐺(𝑍", 𝐷#) can be viewed as the disjoint union of the 
subsets 𝑉#, 𝑉(, 𝑉$, … , 𝑉4"5( of 𝑉, where: 

 
 𝑉# = h0𝑝(FFF, 1𝑝(FFF	, 2𝑝(FFF	, … , 𝑖𝑝(FFF, … , j

"54"
4"
k𝑝(FFFl, 

 𝑉( = h0𝑝(FFF + 𝑝$FFF	,1𝑝(FFF + 𝑝$FFF	, 2𝑝(FFF + 𝑝$FFF	, … , 𝑖𝑝(FFF + 𝑝$FFF, … , j
"54"
4"
k𝑝(FFF + 𝑝$FFFl, 

⋮ 
 𝑉4"5( = h0𝑝(FFF + (𝑝( − 1)𝑝$FFF	, … , 𝑖𝑝(FFF + (𝑝( − 1)𝑝$FFF, … , j

"54"
4"
k 𝑝(FFF + (𝑝( − 1)𝑝$FFFl. 

 
Let us arrange the vertices of  𝑉#, 𝑉(, 𝑉$, … , 𝑉4"5( in the sequence given below, starting with  0F and ending 

with 0F, namely, 
 

𝐻 = j0F, 𝑝(FFF, . . 𝚤𝑝(FFFF, 𝑝( j
"54"
4"
kFFFFFFFFFFFF , j"54"

4"
k𝑝(

FFFFFFFFFFFF + 𝑝$FFF, . . . , 𝑝(FFF + 𝑝$FFF, 𝑝$FFF, … , 𝑝( j
"54"
4"
k + 2𝑝$

FFFFFFFFFFFFFFFFFFFF, … , (𝑝( − 1)𝑝$FFFFFFFFFFFFFF, 0Fk. 
 
This fact is elegantly exhibited in the following array with the cycle indicated by directed arrows. 
 

 
Fig. 6. Array indicating a Hamilton Cycle of  𝐺(𝑍', 𝐷") 

 
One can see that all the vertices of 𝐺(𝑍", 𝐷#) occur exactly once in the above sequence. Further, it is 

easy to verify that there is an edge between any two consecutive vertices in the above sequence. For example 
E(𝑖 + 1)𝑝(FFF + 𝑝$FFFG − (	𝑖𝑝(FFF + 𝑝$FFF) = 𝑝(FFF, which is a zero-divisor in the ring (𝑍", ⨁,⊙), so that, there is an 
edge between these two consecutive vertices in the sequence. Hence the cycle 𝐻 formed by the above 
sequence of vertices of 𝐺(𝑍", 𝐷#) is a Hamilton cycle and the graph 𝐺(𝑍", 𝐷#) is Hamiltonian.  ∎ 
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Corollary 3.2: If 𝑛 > 1,	is an integer, not a prime, then the graph 𝐺(𝑍", 𝐷#) is not bipartite. 
Proof:  The zero-divisor Cayley graph 𝐺(𝑍", 𝐷#) has a triangle (0F, 𝑝(FFF, 2𝑝(FFFFF), which is of length three, 

when 𝑛 = ∏ 𝑝67#%
68( , where 𝑝( < 𝑝$ < ⋯ < 𝑝% are primes, 𝛼6 ≥ 1 and 𝑟 > 1 are integers. So that the zero 

divisor Cayley graph 𝐺(𝑍", 𝐷#) is not bipartite, since a bipartite graph contains  no odd cycles .  ∎ 
Theorem 3.3: If 𝑛 > 1, is an odd integer, which is not a prime, then the graph 𝐺(𝑍", 𝐷#) is Eulerian. 
Proof: Let 𝑛 > 1, be an odd integer, which is not a prime. By the Lemma 2.6 of [15], the degree of each 

vertex in 𝐺(𝑍", 𝐷#) is 𝑛 − 𝜑(𝑛) − 1. Since 𝑛 is odd and 𝜑(𝑛) is even (𝑛 ≥ 3), it follows that,  𝑛 − 𝜑(𝑛) −
1 is even. Since a connected graph is Eulerian, if, and only if, the degree of each of its vertex is even 
Theorem 4.1 of [17], it follows that the graph 𝐺(𝑍", 𝐷#) is Eulerian.     ∎ 

Example 3.4: Consider the graph 𝐺(𝑍39, 𝐷#). Here 35 = 5 × 7, 𝑝( = 5 and 𝑝$ = 7. As in the Theorem 
3.7 of [15], the vertex set is a disjoint union of  𝑉#, 𝑉(, 𝑉$, 𝑉3 and 𝑉0, where 𝑉# = ^0F, 5F	, 10FFFF	, 15FFFF, 20FFFF, 25FFFF, 30FFFF`,
𝑉( = {7F, 12FFFF	, 17FFFF	, 22FFFF, 27FFFF, 32FFFF, 2F}, 𝑉$ = {14FFFF, 19FFFF	, 24FFFF	, 29FFFF, 34FFFF, 4F, 9F}, 𝑉3 = {21FFFF, 26FFFF	, 31FFFF	, 1F, 6F, 11FFFF, 16FFFF} and  
𝑉0 = {28FFFF, 3F	, 8F	, 13FFFF, 18FFFF, 23FFFF, 31FFFF}. Hence 
,0., 5., 10...., 15...., 20...., 25...., 30...., 32...., 27...., 22...., 17...., 12...., 7., 14...., 19...., 24...., 29...., 34...., 4., 9., 16...., 11...., 6., 1., 31...., 21...., 26...., 3., 8.	, 13...., 18...., 23...., 28...., 0.9 
is a Hamilton cycle in the graph 𝐺(𝑍39, 𝐷#). This Hamilton cycle is exhibited by boldface edges and this 

Hamilton cycle is extracted from the graph 𝐺(𝑍39, 𝐷#) and it is shown below:  
 

 
Fig. 7. The graph 𝐺(𝑍(), 𝐷"). 

 

 
Fig. 8. The Hamilton cycle of 𝐺(𝑍(), 𝐷"). 

 

IV. CONCLUSION 

Reference [6] gave a method of enumeration of disjoint Hamilton cycles in a divisor Cayley graph. We 
wish to obtain an enumeration method, which gives the number of Hamilton cycles in the zero-divisor 
Cayley graph 𝐺(𝑍"	, 𝐷#). Suppose 𝑛 > 5, is an even integer, which is not a power of a single prime. Then 
by the Lemma 2.1 of [15], the degree of each vertex is 𝑛 − 𝜑(𝑛) − 1 and its size is "("5;(")5()

$
. Since 𝑛 is 

even and 𝜑(𝑛) is even for 𝑛 ≥ 3, it follows that 𝑛 − 𝜑(𝑛) − 1 is odd and thus degree of each vertex of the 
graph 𝐺(𝑍"	, 𝐷#) is odd. If the graph 𝐺(𝑍"	, 𝐷#) is decomposed into the union of 𝑘 disjoint Hamilton cycles, 
each of which contains 𝑛 edges, the number of edges in the graph 𝐺(𝑍"	, 𝐷#) is 𝑛𝑘, so that 𝑛𝑘 = "("5;(")5()

$
, 

or, 𝑘 = ("5;(")5()
$

. This is not possible since (𝑛 − 𝜑(𝑛) − 1) is odd. So the graph 𝐺(𝑍"	, 𝐷#) cannot be 
decomposed into edge disjoint Hamilton cycles. However if 𝑛 is odd but not a power of a single prime, 
similar argument shows that it may be possible that the graph can be decomposed into edge disjoint 
Hamilton cycles. In this case, it will be interesting to find an enumeration method to find the number of 
edge disjoint Hamilton cycles of the graph 𝐺(𝑍"	, 𝐷#). 
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